论文标题

$ \ MATHCAL {S}_Ω(\ Mathbb {r}^n)$上的储备金

Convolutors on $\mathcal{S}_ω(\mathbb{R}^N)$

论文作者

Albanese, Angela A., Mele, Claudio

论文摘要

在本文中,我们继续研究空间$ \ MATHCAL {O} _ {M,ω}(\ Mathbb {r}^n)$和$ \ Mathcal {o} _ {c,ω}(\ Mathbb {r}^n)$。我们确定了此类空间的新表示形式,并为其双重空间提供了一些结构定理。此外,我们表明$ \ Mathcal {o}'_ {C,ω}(\ Mathbb {r}^n)$是空间储备的空间$ \ MATHCAL {s}_Ω(\ Mathbb {r Mathbb {r}^n)$ be-um-ultrAdiftrys sensellys sensillys sensellys sensellys sensellys sensillys sensillys sensillys sensillys sensellys sensellys sensillys sensillys sensellys synections( Braun,Meise和Taylor)及其双空间$ \ MATHCAL {S}'_Ω(\ Mathbb {r}^n)$。我们还确定,傅立叶变换是从$ \ Mathcal {o}'_ {c,ω}(\ Mathbb {r}^n)$到$ \ Mathcal {o} _ {o} _ {m,ω}(\ MathBB {\ MathBB {r}^n)$的同构。特别是,当以前的空间赋予由$ \ Mathcal {l} _B(\ Mathcal {s}_Ω(\ Mathbb {r}^n))诱导的强大操作员LC-TOPOLOGE时,我们证明这种同构是拓扑。

In this paper we continue the study of the spaces $\mathcal{O}_{M,ω}(\mathbb{R}^N)$ and $\mathcal{O}_{C,ω}(\mathbb{R}^N)$ undertaken in [1]. We determine new representations of such spaces and we give some structure theorems for their dual spaces. Furthermore, we show that $\mathcal{O}'_{C,ω}(\mathbb{R}^N)$ is the space of convolutors of the space $\mathcal{S}_ω(\mathbb{R}^N)$ of the $ω$-ultradifferentiable rapidly decreasing functions of Beurling type (in the sense of Braun, Meise and Taylor) and of its dual space $\mathcal{S}'_ω(\mathbb{R}^N)$. We also establish that the Fourier transform is an isomorphism from $\mathcal{O}'_{C,ω}(\mathbb{R}^N)$ onto $\mathcal{O}_{M,ω}(\mathbb{R}^N)$. In particular, we prove that this isomorphism is topological when the former space is endowed with the strong operator lc-topology induced by $\mathcal{L}_b(\mathcal{S}_ω(\mathbb{R}^N))$ and the last space is endowed with its natural lc-topology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源