论文标题

高维输出的深度多余的积极学习

Deep Multi-Fidelity Active Learning of High-dimensional Outputs

论文作者

Li, Shibo, Kirby, Robert M., Zhe, Shandian

论文摘要

许多应用程序,例如在物理模拟和工程设计中,都要求我们估计具有高维输出的功能。可以以不同的保真度收集培训示例,以允许成本/准确性权衡。在本文中,我们考虑了一项积极的学习任务,该任务既可以识别出富裕性和输入来查询新的培训示例,从而达到最佳的收益成本比率。为此,我们提出了DMFal,这是一种深层的多保真活跃学习方法。我们首先开发了一个基于高维的基于神经网络的多保真模型,该模型具有高维输出,可以灵活,有效地捕获整个输出和忠诚度的各种复杂关系,以改善预测。然后,我们提出了一个基于信息的采集函数,该函数扩展了预测性熵原理。为了克服大型输出尺寸引起的计算挑战,我们使用多变量的三角洲方法和力矩匹配来估计输出后验,以及Weinstein-Aronszajn身份来计算和优化采集功能。该计算是可行的,可靠的和有效的。我们在计算物理和工程设计的多种应用中展示了我们的方法的优势。

Many applications, such as in physical simulation and engineering design, demand we estimate functions with high-dimensional outputs. The training examples can be collected with different fidelities to allow a cost/accuracy trade-off. In this paper, we consider the active learning task that identifies both the fidelity and input to query new training examples so as to achieve the best benefit-cost ratio. To this end, we propose DMFAL, a Deep Multi-Fidelity Active Learning approach. We first develop a deep neural network-based multi-fidelity model for learning with high-dimensional outputs, which can flexibly, efficiently capture all kinds of complex relationships across the outputs and fidelities to improve prediction. We then propose a mutual information-based acquisition function that extends the predictive entropy principle. To overcome the computational challenges caused by large output dimensions, we use multi-variate Delta's method and moment-matching to estimate the output posterior, and Weinstein-Aronszajn identity to calculate and optimize the acquisition function. The computation is tractable, reliable and efficient. We show the advantage of our method in several applications of computational physics and engineering design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源