论文标题

扩散网:表面上的离散性不可知论

DiffusionNet: Discretization Agnostic Learning on Surfaces

论文作者

Sharp, Nicholas, Attaiki, Souhaib, Crane, Keenan, Ovsjanikov, Maks

论文摘要

我们基于一个简单的扩散层对于空间通信非常有效的见解,引入了一种新的通用方法来对3D表面进行深度学习。所得的网络自动对表面的分辨率和采样的变化自动鲁棒,这是一种对实际应用至关重要的基本属性。我们的网络可以在各种几何表示(例如三角形网格或点云)上离散化,甚至可以在一个表示形式上训练,然后应用于另一种表示。我们将扩散的空间支持优化为一个连续的网络参数,从纯粹的本地到完全全局,从而消除了手动选择邻里大小的负担。该方法中唯一的其他成分是在每个点独立应用的多层感知器,以及空间梯度特征以支持定向过滤器。最终的网络简单,强大且高效。在这里,我们主要关注三角形网状表面,并为包括表面分类,分割和非刚性对应的各种任务展示了最新的结果。

We introduce a new general-purpose approach to deep learning on 3D surfaces, based on the insight that a simple diffusion layer is highly effective for spatial communication. The resulting networks are automatically robust to changes in resolution and sampling of a surface -- a basic property which is crucial for practical applications. Our networks can be discretized on various geometric representations such as triangle meshes or point clouds, and can even be trained on one representation then applied to another. We optimize the spatial support of diffusion as a continuous network parameter ranging from purely local to totally global, removing the burden of manually choosing neighborhood sizes. The only other ingredients in the method are a multi-layer perceptron applied independently at each point, and spatial gradient features to support directional filters. The resulting networks are simple, robust, and efficient. Here, we focus primarily on triangle mesh surfaces, and demonstrate state-of-the-art results for a variety of tasks including surface classification, segmentation, and non-rigid correspondence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源