论文标题

在西蒙的豪斯多夫维度上的猜想

On Simon's Hausdorff Dimension Conjecture

论文作者

Damanik, David, Fillman, Jake, Guo, Shuzheng, Ong, Darren C.

论文摘要

巴里·西蒙(Barry Simon)于2005年推测,szegő矩阵与verblunsky系数$ \ {α_n\} _ {n \ in \ Mathbb {z} _+} (0,1)$,以$ z \ in \ partial \ mathbb {d} $外部的值$ z \的限制,一组Hausdorff尺寸不超过$1-γ$。最近,三位作者通过采用类似于Christian Remling对Schrödinger运营商所做的工作的Prüfer变量方法来证明了这一猜想。本文是一件伴侣作品,它呈现了西蒙(Simon)猜想的弱版本的简单证明,该证明本着证明西蒙(Simon)的不同猜想的精神。

Barry Simon conjectured in 2005 that the Szegő matrices, associated with Verblunsky coefficients $\{α_n\}_{n\in\mathbb{Z}_+}$ obeying $\sum_{n = 0}^\infty n^γ|α_n|^2 < \infty$ for some $γ\in (0,1)$, are bounded for values $z \in \partial \mathbb{D}$ outside a set of Hausdorff dimension no more than $1 - γ$. Three of the authors recently proved this conjecture by employing a Prüfer variable approach that is analogous to work Christian Remling did on Schrödinger operators. This paper is a companion piece that presents a simple proof of a weak version of Simon's conjecture that is in the spirit of a proof of a different conjecture of Simon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源