论文标题
动态热弹性壳问题的渐近分析
Asymptotic analysis of a problem for dynamic thermoelastic shells
论文作者
论文摘要
在本文中,我们考虑了线性椭圆形膜壳的热弹性中有三维问题的家族,当厚度趋于零时,研究溶液的渐近行为。我们完全表征了强烈的收敛导致限制作为二维问题的独特解决方案,而参考域则是三维贝壳的常见中间表面的三维贝壳家族。问题是动态的,构成性热弹性定律由Duhamel-Neumann关系给出。
In this paper we consider a family of three-dimensional problems in thermoelasticity for linear elliptic membrane shells and study the asymptotic behaviour of the solution when the thickness tends to zero.We fully characterize with strong convergence results the limit as the unique solution of a two-dimensional problem, where the reference domain is the common middle surface of the family of three-dimensional shells. The problems are dynamic and the constitutive thermoelastic law is given by the Duhamel-Neumann relation.