论文标题
最小带宽$ \ MATHBB {C}^*$ - 对广义司法的动作
Minimal bandwidth $\mathbb{C}^*$-actions on generalized Grassmannians
论文作者
论文摘要
$ \ mathbb {c}^*$的带宽 - 两极对$(x,l)$的动作是其复杂性的自然度量。在本文中,我们研究了$ \ mathbb {c}^*$ - 在合理同质空间上的动作,确定哪些提供最小的带宽。我们证明,最小带宽与简单根部的基础上的最小重量系数有关,该系数将品种描述为明显的Dynkin图。作为结果的直接应用,我们研究了Cayley Plane $ \ Mathrm {E} _6(6)$的Chow环。
The bandwidth of a $\mathbb{C}^*$-action of a polarized pair $(X,L)$ is a natural measure of its complexity. In this paper we study $\mathbb{C}^*$-actions on rational homogeneous spaces, determining which provide minimal bandwidth. We prove that the minimal bandwidth is linked to the smallest coefficient of the fundamental weight, in a base of simple roots, which describes the variety as a marked Dynkin diagram. As a direct application of the results we study the Chow ring of the Cayley plane $\mathrm{E}_6(6)$.