论文标题
与巴斯德介质的三维麦克斯韦方程中离散单滚子算子的特征结构的分叉分析
Bifurcation Analysis of the Eigenstructure of the Discrete Single-curl Operator in Three-dimensional Maxwell's Equations with Pasteur Media
论文作者
论文摘要
本文重点是研究$γ$参数化的特征化特征值问题($γ$ -GEP)的分叉分析,该特征值($γ$ -GEP)在三维(3D)带有巴斯德介质的麦克斯韦方程式中引起的,其中$γ$是Magnetoeleclectric chirectric chirectric chiralital chirality garirality参数。对于弱耦合的情况,即$γ<γ_ {*} \等价$临界值,$γ$ -GEP是积极的,这是由Chern等人对此进行了很好的确定的。复杂的结构。对于严重的强耦合情况,Huang等人,2018年已经提出了电磁场的数值计算。在本文中,我们对$γ$ -GEPP的特征结构行为构建了几个理论结果。我们证明,$γ$ -GEP对于任何$γ> 0 $都是常规的,并且$γ$ -GEP具有$ 2 \ times 2 $ jordan of Infinite eigenvalues的jordan块,其关键值$γ_{*} $。然后,我们表明,$ 2 \ times 2 $ Jordan Block将分成一个复杂的共轭特征值对,该对迅速向上倒下,然后在原点附近的某个真实点发生碰撞。接下来,它将分为两个真实的特征值,一个朝左侧向左移动,另一个向右移动,沿着$γ$增加。一个新形成的状态,其能源比基态小,因为$γ$大于临界值。这种物理现象的惊人特征对实际应用非常有帮助。因此,本文的目的是阐明与巴斯德介质的3D麦克斯韦方程相应的理论特征结构。
This paper focuses on studying the bifurcation analysis of the eigenstructure of the $γ$-parameterized generalized eigenvalue problem ($γ$-GEP) arising in three-dimensional (3D) source-free Maxwell's equations with Pasteur media, where $γ$ is the magnetoelectric chirality parameter. For the weakly coupled case, namely, $γ< γ_{*} \equiv$ critical value, the $γ$-GEP is positive definite, which has been well-studied by Chern et.\ al, 2015. For the strongly coupled case, namely, $γ> γ_{*}$, the $γ$-GEP is no longer positive definite, introducing a totally different and complicated structure. For the critical strongly coupled case, numerical computations for electromagnetic fields have been presented by Huang et.\ al, 2018. In this paper, we build several theoretical results on the eigenstructure behavior of the $γ$-GEPs. We prove that the $γ$-GEP is regular for any $γ> 0$, and the $γ$-GEP has $2 \times 2$ Jordan blocks of infinite eigenvalues at the critical value $γ_{*}$. Then, we show that the $2 \times 2$ Jordan block will split into a complex conjugate eigenvalue pair that rapidly goes down and up and then collides at some real point near the origin. Next, it will bifurcate into two real eigenvalues, with one moving toward the left and the other to the right along the real axis as $γ$ increases. A newly formed state whose energy is smaller than the ground state can be created as $γ$ is larger than the critical value. This stunning feature of the physical phenomenon would be very helpful in practical applications. Therefore, the purpose of this paper is to clarify the corresponding theoretical eigenstructure of 3D Maxwell's equations with Pasteur media.