论文标题
通过部分积分方程框架使用Galerkin方法对PDE解决方案中边界条件的新处理
A New Treatment of Boundary Conditions in PDE Solution with Galerkin Methods via Partial Integral Equation Framework
论文作者
论文摘要
我们提出了一个新的分析和数值框架,用于解决部分微分方程(PDE)的解决方案,该框架基于一个精确的转换,将边界约束移至相应的控制方程的动力学。该框架基于PDE的部分积分方程(PIE)表示,其中PDE方程转换为等效的PIE公式,该公式不需要其解决方案状态上的边界条件。 PDE-PIE框架允许开发广义的派 - 加盖尔金近似方法,用于一类广泛的线性PDE,具有非恒定系数,该系数由非周期性边界条件控制,例如,包括Dirichlet,Neumann和Robin边界。该结果的意义在于,对于几乎任何线性PDE的解决方案现在都可以基于串联扩展的形式,使用合适的基本函数,例如,例如,第一类的Chebyshev多项式,无论边界条件如何,Chebyshev多项式。在许多情况下,涉及均匀或简单的时间依赖性边界输入,时间上也可以进行分析积分。我们在一个使用分析和数值集成随时间的分析和数值积分实现的空间变量中介绍了几个PDE解决方案示例。开发的框架可以自然扩展到多个空间维度,并可能扩展到非线性问题。
We present a new analytical and numerical framework for solution of Partial Differential Equations (PDEs) that is based on an exact transformation that moves the boundary constraints into the dynamics of the corresponding governing equation. The framework is based on a Partial Integral Equation (PIE) representation of PDEs, where a PDE equation is transformed into an equivalent PIE formulation that does not require boundary conditions on its solution state. The PDE-PIE framework allows for a development of a generalized PIE-Galerkin approximation methodology for a broad class of linear PDEs with non-constant coefficients governed by non-periodic boundary conditions, including, e.g., Dirichlet, Neumann and Robin boundaries. The significance of this result is that solution to almost any linear PDE can now be constructed in a form of an analytical approximation based on a series expansion using a suitable set of basis functions, such as, e.g., Chebyshev polynomials of the first kind, irrespective of the boundary conditions. In many cases involving homogeneous or simple time-dependent boundary inputs, an analytical integration in time is also possible. We present several PDE solution examples in one spatial variable implemented with the developed PIE-Galerkin methodology using both analytical and numerical integration in time. The developed framework can be naturally extended to multiple spatial dimensions and, potentially, to nonlinear problems.