论文标题

可变处理器杯游戏

The Variable-Processor Cup Game

论文作者

Kuszmaul, William, Westover, Alek

论文摘要

在$ p $处理器上安排任务的问题,因此,没有任何任务落后的任务通常被描​​述为带有杯子和水的游戏。在$ n $杯上的$ P $ - 处理器杯游戏中,有两个玩家,一个填充物和一个空虚的人,轮流从一组$ n $杯子中添加和去除水。在每个回合中,填充物在杯子中加入$ P $单位的水,每杯中最多只有$ 1 $的水,然后空位选择$ p $杯,以取出多达$ 1 $ $的水。空虚的目标是最大程度地减少积压,这是最大杯子的高度。 $ P $ - 处理器杯游戏已在许多不同的环境中进行了研究,其历史可以追溯到1960年代末。过去的所有工作都有一个共同的假设:$ p $是固定的。本文启动了有关可用处理器$ p $随时间变化时发生的情况的研究,从而导致了我们所谓的\ emph {可变处理器杯游戏}。 值得注意的是,可变处理器杯游戏的最佳界限与其经典同行截然不同。 $ p $ - 处理器杯具有最佳的积压$θ(\ log n)$,而可变处理器游戏具有最佳的积压$θ(n)$。此外,还有一种有效的填充策略,可以在准多项式时间内与任何确定性的清空策略中产生积压$ω(n^{1 -ε})$。 我们还表明,随机化的直接用途不能用于帮助空位。特别是,对于任何正常数$δ$,以及任何$δ$ - 果岭样随机排空算法$ \ Mathcal {a} $,有一种填充策略可以实现BACKLOG $ω(n^{1-ε} $,违反$ Mathcal {A} $ in quasi-Polynomial iN quasi-polynomial time。

The problem of scheduling tasks on $p$ processors so that no task ever gets too far behind is often described as a game with cups and water. In the $p$-processor cup game on $n$ cups, there are two players, a filler and an emptier, that take turns adding and removing water from a set of $n$ cups. In each turn, the filler adds $p$ units of water to the cups, placing at most $1$ unit of water in each cup, and then the emptier selects $p$ cups to remove up to $1$ unit of water from. The emptier's goal is to minimize the backlog, which is the height of the fullest cup. The $p$-processor cup game has been studied in many different settings, dating back to the late 1960's. All of the past work shares one common assumption: that $p$ is fixed. This paper initiates the study of what happens when the number of available processors $p$ varies over time, resulting in what we call the \emph{variable-processor cup game}. Remarkably, the optimal bounds for the variable-processor cup game differ dramatically from its classical counterpart. Whereas the $p$-processor cup has optimal backlog $Θ(\log n)$, the variable-processor game has optimal backlog $Θ(n)$. Moreover, there is an efficient filling strategy that yields backlog $Ω(n^{1 - ε})$ in quasi-polynomial time against any deterministic emptying strategy. We additionally show that straightforward uses of randomization cannot be used to help the emptier. In particular, for any positive constant $Δ$, and any $Δ$-greedy-like randomized emptying algorithm $\mathcal{A}$, there is a filling strategy that achieves backlog $Ω(n^{1 - ε})$ against $\mathcal{A}$ in quasi-polynomial time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源