论文标题
代表和降低可穿戴的心电图录音
Representing and Denoising Wearable ECG Recordings
论文作者
论文摘要
现代可穿戴设备嵌入了一系列非侵入性生物标志物传感器,这些传感器有望改善疾病的检测和治疗。一种这样的传感器是单铅心电图(ECG),它测量心脏中的电信号。与临床ECG相比,由于运动,可穿戴设备的巨大纵向结构的大量ECG测量量具有丰富的纵向结构的益处,其优势以可能的嘈杂测量为代价。在这项工作中,我们开发了一个统计模型,以模拟来自可穿戴传感器的ECG中的结构化噪声过程,设计了有利于分析变化的节拍对孔表示,并设计了一种基于因子分析的方法来代替ECG。我们研究了使用现实的ECG模拟器和结构化噪声模型生成的合成数据。在不同级别的信号到噪声水平上,我们定量测量了性能的上限,并比较了线性和非线性模型的估计值。最后,我们将我们的方法应用于一组可穿戴设备在移动健康研究中收集的心电图。
Modern wearable devices are embedded with a range of noninvasive biomarker sensors that hold promise for improving detection and treatment of disease. One such sensor is the single-lead electrocardiogram (ECG) which measures electrical signals in the heart. The benefits of the sheer volume of ECG measurements with rich longitudinal structure made possible by wearables come at the price of potentially noisier measurements compared to clinical ECGs, e.g., due to movement. In this work, we develop a statistical model to simulate a structured noise process in ECGs derived from a wearable sensor, design a beat-to-beat representation that is conducive for analyzing variation, and devise a factor analysis-based method to denoise the ECG. We study synthetic data generated using a realistic ECG simulator and a structured noise model. At varying levels of signal-to-noise, we quantitatively measure an upper bound on performance and compare estimates from linear and non-linear models. Finally, we apply our method to a set of ECGs collected by wearables in a mobile health study.