论文标题
在测量驱动过渡的临界点处的纠缠消极情绪
Entanglement negativity at the critical point of measurement-driven transition
论文作者
论文摘要
我们研究一个随机统一电路的纠缠行为,该电路在一个空间尺寸中以测量驱动的相变为射射线测量。我们在数值上研究了两个不相交间隔的对数纠缠负性,并发现它是交叉比例的力量。我们研究了两个系统:(1)具有投影测量值的克利福德电路,以及(2)HAAR随机局部统一电路,并进行投影测量。值得注意的是,我们在关键点确定了纠缠负效果的幂律行为。纠缠熵和相互信息的先前结果表明,测量驱动的过渡的紧急形式不变性。我们的结果表明,测量驱动的过渡的临界行为与任何\ emph {统一}保串场理论的基态行为不同。
We study the entanglement behavior of a random unitary circuit punctuated by projective measurements at the measurement-driven phase transition in one spatial dimension. We numerically study the logarithmic entanglement negativity of two disjoint intervals and find that it scales as a power of the cross-ratio. We investigate two systems: (1) Clifford circuits with projective measurements, and (2) Haar random local unitary circuit with projective measurements. Remarkably, we identify a power-law behavior of entanglement negativity at the critical point. Previous results of entanglement entropy and mutual information point to an emergent conformal invariance of the measurement-driven transition. Our result suggests that the critical behavior of the measurement-driven transition is distinct from the ground state behavior of any \emph{unitary} conformal field theory.