论文标题
o($ d $,$ d $) - 协方差二环$β$ functions和poisson-lie t二维
O($D$,$D$)-covariant two-loop $β$-functions and Poisson-Lie T-duality
论文作者
论文摘要
我们表明,封闭的,玻色弦的一环$β$ - 可以用明显的O($ d $,$ d $)写入协方差形式。基于此结果,我们证明1)Poisson-lie对称$σ$ - 模型是双环肾上腺素,2)他们的$β$ - 功能在Poisson-lie t-duality下是不变的。此外,我们确定了一个杰出的方案,在该方案中,Poisson-lie对称是显现的。它简化了两回路$β$ - 功能的计算,从而提供了一种强大的新工具,可以推进可集成的$σ$模型和广义t-二维的量子制度。作为说明示例,我们介绍了可集成$λ$的两环$β$ - 函数 - 和$η$ - 构造。
We show that the one- and two-loop $β$-functions of the closed, bosonic string can be written in a manifestly O($D$,$D$)-covariant form. Based on this result, we prove that 1) Poisson-Lie symmetric $σ$-models are two-loop renormalisable and 2) their $β$-functions are invariant under Poisson-Lie T-duality. Moreover, we identify a distinguished scheme in which Poisson-Lie symmetry is manifest. It simplifies the calculation of two-loop $β$-functions significantly and thereby provides a powerful new tool to advance into the quantum regime of integrable $σ$-models and generalised T-dualities. As an illustrating example, we present the two-loop $β$-functions of the integrable $λ$- and $η$-deformation.