论文标题

基于可能性的轨迹预测的不同样本

Likelihood-Based Diverse Sampling for Trajectory Forecasting

论文作者

Ma, Yecheng Jason, Inala, Jeevana Priya, Jayaraman, Dinesh, Bastani, Osbert

论文摘要

预测复杂的车辆和行人多模式分布需要强大的概率方法。标准化流(NF)最近已成为建模此类分布的有吸引力的工具。但是,关键缺点是从流量模型中绘制的独立样本通常无法充分捕获基础分布中的所有模式。我们提出了基于可能性的不同采样(LDS),这是一种改善预训练流量模型的轨迹样品质量和多样性的方法。 LDS并没有产生单个样品,而是一镜头产生一组轨迹。给定预先训练的预测流模型,我们使用模型中的梯度训练LD,以优化一个目标函数,该目标函数在预测集合中奖励了个体轨迹的很高可能性,并在轨迹之间进行高空间分离。 LDS优于各种预训练流动模型以及条件变异自动编码器(CVAE)模型的最先进的事后神经多样性预测方法。至关重要的是,它也可以用于跨型轨迹预测,在未标记的测试示例中,对不同的预测进行了培训。 LDS易于实现,我们表明它对两个具有挑战性的基准测试的基线提供了简单的插件改进。代码为:https://github.com/jasonma2016/lds

Forecasting complex vehicle and pedestrian multi-modal distributions requires powerful probabilistic approaches. Normalizing flows (NF) have recently emerged as an attractive tool to model such distributions. However, a key drawback is that independent samples drawn from a flow model often do not adequately capture all the modes in the underlying distribution. We propose Likelihood-Based Diverse Sampling (LDS), a method for improving the quality and the diversity of trajectory samples from a pre-trained flow model. Rather than producing individual samples, LDS produces a set of trajectories in one shot. Given a pre-trained forecasting flow model, we train LDS using gradients from the model, to optimize an objective function that rewards high likelihood for individual trajectories in the predicted set, together with high spatial separation among trajectories. LDS outperforms state-of-art post-hoc neural diverse forecasting methods for various pre-trained flow models as well as conditional variational autoencoder (CVAE) models. Crucially, it can also be used for transductive trajectory forecasting, where the diverse forecasts are trained on-the-fly on unlabeled test examples. LDS is easy to implement, and we show that it offers a simple plug-in improvement over baselines on two challenging benchmarks. Code is at: https://github.com/JasonMa2016/LDS

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源