论文标题

心脏机电模型与用于闭环血液循环的总参数模型结合。第二部分:数值近似

A cardiac electromechanics model coupled with a lumped parameters model for closed-loop blood circulation. Part II: numerical approximation

论文作者

Regazzoni, Francesco, Salvador, Matteo, Africa, Pasquale Claudio, Fedele, Marco, Dede', Luca, Quarteroni, Alfio

论文摘要

在3D心脏机电和0D心血管模型的准确有效隔离方案的框架内,我们在这里提出了一种新的数值方法,以解决这一两部分论文的第一部分中引入的耦合的3D-0D问题。我们结合了隐式解释方案,以在多物理设置中解决不同的心脏模型。我们正确分开并管理与心脏机电和血液循环有关的不同时间和空间尺度。我们采用灵活且可扩展的间介导转移操作员,该操作员能够在不同的网格之间以及可能在不同的有限元空间之间插值有限元函数。我们提出了一种数值方法,以在完全分离的方式中以数值稳定的方式将3D机电模型和0D循环模型融入。通过心跳的不同阶段不需要适应。我们还提出了一种可靠的算法来重建无压力参考配置。由于与此反问题的数值解决方案相关的计算成本,参考配置恢复算法与一种新颖的投影技术相同,可以精确地从计算域的粗略表示中恢复卸载的几何形状。我们通过通过网格细化进行精确研究来显示我们的数值方案的收敛性能。为了证明我们的计算模型的生物物理准确性,我们还通过改变预努力,后负载和收缩性来解决数值模拟中临床兴趣的不同方案。确实,我们模拟了生理上相关的行为,并在心脏功能的背景下重现有意义的结果。

In the framework of accurate and efficient segregated schemes for 3D cardiac electromechanics and 0D cardiovascular models, we propose here a novel numerical approach to address the coupled 3D-0D problem introduced in Part I of this two-part series of papers. We combine implicit-explicit schemes to solve the different cardiac models in a multiphysics setting. We properly separate and manage the different time and space scales related to cardiac electromechanics and blood circulation. We employ a flexible and scalable intergrid transfer operator that enables to interpolate Finite Element functions among different meshes and, possibly, among different Finite Element spaces. We propose a numerical method to couple the 3D electromechanical model and the 0D circulation model in a numerically stable manner within a fully segregated fashion. No adaptations are required through the different phases of the heartbeat. We also propose a robust algorithm to reconstruct the stress-free reference configuration. Due to the computational cost associated with the numerical solution of this inverse problem, the reference configuration recovery algorithm comes along with a novel projection technique to precisely recover the unloaded geometry from a coarser representation of the computational domain. We show the convergence property of our numerical schemes by performing an accuracy study through grid refinement. To prove the biophysical accuracy of our computational model, we also address different scenarios of clinical interest in our numerical simulations by varying preload, afterload and contractility. Indeed, we simulate physiologically relevant behaviors and we reproduce meaningful results in the context of cardiac function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源