论文标题

基于摩尔斯的持久性等级不变的纤维

Morse-based Fibering of the Persistence Rank Invariant

论文作者

Bapat, Asilata, Brooks, Robyn, Hacker, Celia, Landi, Claudia, Mahler, Barbara I.

论文摘要

尽管毫无疑问,多参数持续的同源性是分析多变量数据的有用工具,但在可用的拓扑数据分析工具箱中仍缺乏计算这些模块的有效方法。其他问题(例如解释和可视化产出)仍然难以解决。当前,可视化多参数持久图的软件仅用于二维持续模块。多参数持续模块最简单的不变之一是其等级不变式,定义为计算通过给定的多参数值的线性独立同源类数量计算线性独立同源类的数量。我们提出了朝着任何给定数量参数的持久性模块的秩级不变式解释和可视化的步骤。我们展示了如何使用离散的莫尔斯理论来计算等级不变性,证明它完全取决于其在坐标至关重要的点上至关重要的点上的值。这些临界点分配了参数空间中的所有正斜率线的集合集合到等效类中,以便同一类中的沿线沿线不变。我们表明,我们可以从限制的持续图中推导给给定类别中的线的限制的所有持续图图。

Although there is no doubt that multi-parameter persistent homology is a useful tool to analyse multi-variate data, efficient ways to compute these modules are still lacking in the available topological data analysis toolboxes. Other issues such as interpretation and visualization of the output remain difficult to solve. Software visualizing multi-parameter persistence diagrams is currently only available for 2-dimensional persistence modules. One of the simplest invariants for a multi-parameter persistence module is its rank invariant, defined as the function that counts the number of linearly independent homology classes that live in the filtration through a given pair of values of the multi-parameter. We propose a step towards interpretation and visualization of the rank invariant for persistence modules for any given number of parameters. We show how discrete Morse theory may be used to compute the rank invariant, proving that it is completely determined by its values at points whose coordinates are critical with respect to a discrete Morse gradient vector field. These critical points partition the set of all lines of positive slope in the parameter space into equivalence classes, such that the rank invariant along lines in the same class are also equivalent. We show that we can deduce all persistence diagrams of the restrictions to the lines in a given class from the persistence diagram of the restriction to a representative in that class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源