论文标题

停止,返回和可逆的图形行动自动机的状态复杂性

State complexity of halting, returning and reversible graph-walking automata

论文作者

Martynova, Olga, Okhotin, Alexander

论文摘要

通过使用有限状态控件来决定下一步去哪里,通过在边缘的节点之间移动图形自动机(GWA)遍历图。众所周知,每个GWA都可以转换为在每个输入上停止的GWA,转变为返回初始节点以接受和可逆的GWA的GWA。本文建立了对这些转换的状态爆炸的下限,并与上限紧密匹配。结果表明,在每个输入中,在每个输入中制作$ k $ ar的图形都会停止,最多需要$ 2NK+1美元,至少$ 2(n-1)(k-3)$ state在最坏的情况下;在最坏情况下,GWA返回到初始节点之前,最多最多需要2nk+n $和至少$ 2(n-1)$ 2(n-1)(k-3)$状态;在最坏的情况下,一次满足这两个属性的自动机一次最多都有$ 4NK+1 $和至少$ 4(n-1)(k-3)$状态。在最坏的情况下,可逆的自动机最多具有$ 4NK+1 $和至少$ 4(n-1)(K-3)-1 $状态。

Graph-walking automata (GWA) traverse graphs by moving between the nodes following the edges, using a finite-state control to decide where to go next. It is known that every GWA can be transformed to a GWA that halts on every input, to a GWA returning to the initial node in order to accept, and to a reversible GWA. This paper establishes lower bounds on the state blow-up of these transformations, as well as closely matching upper bounds. It is shown that making an $n$-state GWA traversing $k$-ary graphs halt on every input requires at most $2nk+1$ states and at least $2(n-1)(k-3)$ states in the worst case; making a GWA return to the initial node before acceptance takes at most $2nk+n$ and at least $2(n-1)(k-3)$ states in the worst case; Automata satisfying both properties at once have at most $4nk+1$ and at least $4(n-1)(k-3)$ states in the worst case. Reversible automata have at most $4nk+1$ and at least $4(n-1)(k-3)-1$ states in the worst case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源