论文标题
关于选择性着色问题的结构参数化
On structural parameterizations of the selective coloring problem
论文作者
论文摘要
在选择性着色问题中,我们将为我们提供一个整数$ k $,图$ g $,以及$ v(g)$的分区$ p $零件,目标是决定我们是否可以精确地选择每个零件的一个顶点并获得$ k $ colorable-colorable-colorable-colorable诱导的$ g $ $ g $。 Demange等人最近才开始研究顶点着色的这种概括。 [理论计算机科学,2014年],与Guo等人一起安排分布式系统的问题。 [TAMC,2020]讨论问题的参数复杂性的第一个结果。在这项工作中,我们研究了选择性着色的多个结构参数化。我们首先重新审视Demange等人的许多硬度结果。并展示它们如何用于为广泛使用的参数(例如路径宽度,距离距离群集和最大叶子编号)提供棘手的证明。之后,我们会在通过距离群集参数化时,或在关节参数化的零件宽度和零件数,以及零件的零件和数量时提出固定参数的障碍算法。我们的主要贡献是证明,对于每一个固定的$ k \ geq 1 $,当通过顶点覆盖号共同参数和零件数量时,选择性着色不接受多项式内核,这意味着在相同的参数下,多色独立组不接收多项式核。
In the Selective Coloring problem, we are given an integer $k$, a graph $G$, and a partition of $V(G)$ into $p$ parts, and the goal is to decide whether or not we can pick exactly one vertex of each part and obtain a $k$-colorable induced subgraph of $G$. This generalization of Vertex Coloring has only recently begun to be studied by Demange et al. [Theoretical Computer Science, 2014], motivated by scheduling problems on distributed systems, with Guo et al. [TAMC, 2020] discussing the first results on the parameterized complexity of the problem. In this work, we study multiple structural parameterizations for Selective Coloring. We begin by revisiting the many hardness results of Demange et al. and show how they may be used to provide intractability proofs for widely used parameters such as pathwidth, distance to co-cluster, and max leaf number. Afterwards, we present fixed-parameter tractability algorithms when parameterizing by distance to cluster, or under the joint parameterizations treewidth and number of parts, and co-treewidth and number of parts. Our main contribution is a proof that, for every fixed $k \geq 1$, Selective Coloring does not admit a polynomial kernel when jointly parameterized by the vertex cover number and the number of parts, which implies that Multicolored Independent Set does not admit a polynomial kernel under the same parameterization.