论文标题

智能城市中的雾计算方法:最先进的评论

Fog Computing Approaches in Smart Cities: A State-of-the-Art Review

论文作者

Songhorabadi, Maryam, Rahimi, Morteza, Farid, Amir Mahdi Moghaddam, Kashani, Mostafa Haghi

论文摘要

如今,智能城市的发展,特别是在位置感知,对潜伏期敏感和安全至关重要的应用程序(例如紧急火灾事件,患者健康监测或实时制造)的发展,在很大程度上取决于可以解决这些要求的更先进的计算范式。在这方面,强大的云计算补充的雾计算通过将靠近端设备定位而扮演着优势的角色。尽管如此,智能城市中使用的使用方法通常是基于云的方法,这不仅会导致安全性和时间敏感的服务受到损害,而且还会导致其灵活性和可靠性受到限制。为了消除云和其他相关计算范式(例如边缘计算)的局限性,本文提出了针对智能城市基于最新雾的方法的系统文献综述(SLR)。此外,根据审查研究的内容,提出了一种分类法,分为三个类,包括基于服务的,基于资源的和基于应用程序的。该SLR还研究了每个类别的评估因素,使用的工具,评估方法,优点和缺点。还提到了每个类提出的算法的类型。最重要的是,通过考虑各种观点,通过将未来趋势和问题分类为实用的子类,提供了全面和独特的开放问题和挑战。

These days, the development of smart cities, specifically in location-aware, latency-sensitive, and security-crucial applications (such as emergency fire events, patient health monitoring, or real-time manufacturing) heavily depends on a more advance computing paradigms that can address these requirements. In this regard, fog computing, a robust cloud computing complement, plays a preponderant role by virtue of locating closer to the end-devices. Nonetheless, utilized approaches in smart cities are frequently cloud-based, which causes not only the security and time-sensitive services to suffer but also its flexibility and reliability to be restricted. So as to obviate the limitations of cloud and other related computing paradigms such as edge computing, this paper proposes a systematic literature review (SLR) for the state-of-the-art fog-based approaches in smart cities. Furthermore, according to the content of the reviewed researches, a taxonomy is proposed, falls into three classes, including service-based, resource-based, and application-based. This SLR also investigates the evaluation factors, used tools, evaluation methods, merits, and demerits of each class. Types of proposed algorithms in each class are mentioned as well. Above all else, by taking various perspectives into account, comprehensive and distinctive open issues and challenges are provided via classifying future trends and issues into practical sub-classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源