论文标题
强大的超宽范围范围误差缓解,边缘深度学习
Robust Ultra-wideband Range Error Mitigation with Deep Learning at the Edge
论文作者
论文摘要
超宽带(UWB)是无线本地化的最先进,最受欢迎的技术。然而,非视线(NLOS)条件中的精确范围和本地化仍然是一个开放的研究主题。实际上,室内无线电环境的多径效应,反射,折射和复杂性可以轻松引入范围测量的正偏见,从而导致高度不准确和不令人满意的位置估计。本文提出了一种有效的表示学习方法,该方法利用了深度学习和图形优化技术的最新进步,以实现边缘的有效缓解误差。通道脉冲响应(CIR)信号被直接利用以提取高语义特征,以估计NLOS或LOS条件下的校正。通过不同的设置和配置进行了广泛的实验证明了我们方法的有效性,并证明了强大且低的计算功率UWB范围误差缓解的可行性。
Ultra-wideband (UWB) is the state-of-the-art and most popular technology for wireless localization. Nevertheless, precise ranging and localization in non-line-of-sight (NLoS) conditions is still an open research topic. Indeed, multipath effects, reflections, refractions, and complexity of the indoor radio environment can easily introduce a positive bias in the ranging measurement, resulting in highly inaccurate and unsatisfactory position estimation. This article proposes an efficient representation learning methodology that exploits the latest advancement in deep learning and graph optimization techniques to achieve effective ranging error mitigation at the edge. Channel Impulse Response (CIR) signals are directly exploited to extract high semantic features to estimate corrections in either NLoS or LoS conditions. Extensive experimentation with different settings and configurations has proved the effectiveness of our methodology and demonstrated the feasibility of a robust and low computational power UWB range error mitigation.