论文标题

TSSRGCN:临时光谱空间检索图卷积网络用于交通流量

TSSRGCN: Temporal Spectral Spatial Retrieval Graph Convolutional Network for Traffic Flow Forecasting

论文作者

Chen, Xu, Zhang, Yuanxing, Du, Lun, Fang, Zheng, Ren, Yi, Bian, Kaigui, Xie, Kunqing

论文摘要

交通流量预测对于提高运输系统效率和预防紧急情况具有重要意义。由于短期和长期交通流量的高度非线性和复杂的进化模式,现有方法通常无法充分利用空间信息信息,尤其是具有不同时期变化和道路段特征的各种时间模式。此外,代表交通状态指标的绝对值和代表相对价值的局部性的全球性尚未同时考虑。本文提出了一个神经网络模型,该模型侧重于交通网络的全球性和局部性以及流量数据的时间模式。基于周期的扩张可变形卷积块旨在准确捕获每个节点上的不同时间变化趋势。我们的模型可以提取全局和局部空间信息,因为我们结合了两种图形卷积网络方法来学习节点和边缘的表示。两个现实世界数据集上的实验表明,该模型可以仔细检查流量数据的时空相关性,并且其性能优于比较的最新方法。进一步的分析表明,流量网络的局部性和全球性对于交通流量的预测至关重要,建议的TSSRGCN模型可以适应各种时间流量模式。

Traffic flow forecasting is of great significance for improving the efficiency of transportation systems and preventing emergencies. Due to the highly non-linearity and intricate evolutionary patterns of short-term and long-term traffic flow, existing methods often fail to take full advantage of spatial-temporal information, especially the various temporal patterns with different period shifting and the characteristics of road segments. Besides, the globality representing the absolute value of traffic status indicators and the locality representing the relative value have not been considered simultaneously. This paper proposes a neural network model that focuses on the globality and locality of traffic networks as well as the temporal patterns of traffic data. The cycle-based dilated deformable convolution block is designed to capture different time-varying trends on each node accurately. Our model can extract both global and local spatial information since we combine two graph convolutional network methods to learn the representations of nodes and edges. Experiments on two real-world datasets show that the model can scrutinize the spatial-temporal correlation of traffic data, and its performance is better than the compared state-of-the-art methods. Further analysis indicates that the locality and globality of the traffic networks are critical to traffic flow prediction and the proposed TSSRGCN model can adapt to the various temporal traffic patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源