论文标题

先生:通过从多个不同镜头看相同场景的相同场景来纠正自我监督的图像

SIR: Self-supervised Image Rectification via Seeing the Same Scene from Multiple Different Lenses

论文作者

Fan, Jinlong, Zhang, Jing, Tao, Dacheng

论文摘要

深度学习通过基于大规模合成数据集的监督培训来利用深度神经网络的表示能力来证明其在图像纠正中的力量。但是,由于特定的失真模型的普遍性有限,并且缺乏明确的对失真和整流过程的建模,因此该模型可能过度拟合合成图像并在现实世界中的图像上不当概括。在本文中,我们提出了一种基于重要见解的新颖的自我监督图像整流方法(SIR)方法,即来自不同镜头的同一场景的扭曲图像的整流结果应该相同。具体来说,我们设计了一个具有共享编码器和几个预测头的新网络体系结构,每个网络架构都预测了特定失真模型的失真参数。我们进一步利用一个可区分的翘曲模块来生成整流的图像并从失真参数中重新截距图像,并在训练过程中利用它们之间的内部和间模型一致性,从而导致自我监督的学习方案,而无需进行基本真实变形参数或正常图像。合成数据集和现实世界的鱼眼图像的实验表明,与监督的基线方法和代表性的最先进方法相比,我们的方法具有可比甚至更好的性能。自我监督的学习还改善了失真模型的普遍性,同时保持自隔离。

Deep learning has demonstrated its power in image rectification by leveraging the representation capacity of deep neural networks via supervised training based on a large-scale synthetic dataset. However, the model may overfit the synthetic images and generalize not well on real-world fisheye images due to the limited universality of a specific distortion model and the lack of explicitly modeling the distortion and rectification process. In this paper, we propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of a same scene from different lens should be the same. Specifically, we devise a new network architecture with a shared encoder and several prediction heads, each of which predicts the distortion parameter of a specific distortion model. We further leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters and exploit the intra- and inter-model consistency between them during training, thereby leading to a self-supervised learning scheme without the need for ground-truth distortion parameters or normal images. Experiments on synthetic dataset and real-world fisheye images demonstrate that our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods. Self-supervised learning also improves the universality of distortion models while keeping their self-consistency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源