论文标题

Scalenas:视觉识别的尺度感知表示形式的一声学习

ScaleNAS: One-Shot Learning of Scale-Aware Representations for Visual Recognition

论文作者

Cheng, Hsin-Pai, Liang, Feng, Li, Meng, Cheng, Bowen, Yan, Feng, Li, Hai, Chandra, Vikas, Chen, Yiran

论文摘要

不同尺寸的身体部位和对象之间的比例差异是视觉识别任务的挑战性问题。现有作品通常设计专用的骨干或应用神经体系结构搜索(NAS),以应对这一挑战。但是,现有作品对设计或搜索空间施加了重大限制。为了解决这些问题,我们提出了Scalenas,这是一种用于探索规模意识表示的单次学习方法。 Scalenas一次通过搜索多尺度特征聚合来解决多个任务。 Scalenas采用灵活的搜索空间,该空间允许任意数量的块和跨尺度功能融合。为了应付灵活空间所产生的高搜索成本,Scalenas采用了一声学习,用于由分组采样和进化搜索驱动的多尺度超级网。无需进一步的再培训,可以直接部署Scaleenet,以进行具有出色性能的不同视觉识别任务。我们使用Scalenas创建针对两个不同任务的高分辨率模型,即针对人姿势估计的Scaleenet-P,而Scaleenet-S用于语义分割。在这两个任务中,Scaleenet-P和Scaleenet-S优于现有的手动制作和基于NAS的方法。当将Scaleenet-P应用于自下而上的人姿势估计时,它超过了最新的高级赫内特。特别是,Scalenet-P4在可可测试-DEV上获得71.6%的AP,从而获得了新的最新结果。

Scale variance among different sizes of body parts and objects is a challenging problem for visual recognition tasks. Existing works usually design dedicated backbone or apply Neural architecture Search(NAS) for each task to tackle this challenge. However, existing works impose significant limitations on the design or search space. To solve these problems, we present ScaleNAS, a one-shot learning method for exploring scale-aware representations. ScaleNAS solves multiple tasks at a time by searching multi-scale feature aggregation. ScaleNAS adopts a flexible search space that allows an arbitrary number of blocks and cross-scale feature fusions. To cope with the high search cost incurred by the flexible space, ScaleNAS employs one-shot learning for multi-scale supernet driven by grouped sampling and evolutionary search. Without further retraining, ScaleNet can be directly deployed for different visual recognition tasks with superior performance. We use ScaleNAS to create high-resolution models for two different tasks, ScaleNet-P for human pose estimation and ScaleNet-S for semantic segmentation. ScaleNet-P and ScaleNet-S outperform existing manually crafted and NAS-based methods in both tasks. When applying ScaleNet-P to bottom-up human pose estimation, it surpasses the state-of-the-art HigherHRNet. In particular, ScaleNet-P4 achieves 71.6% AP on COCO test-dev, achieving new state-of-the-art result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源