论文标题
模仿图像denoising的自适应噪声
Adaptive noise imitation for image denoising
论文作者
论文摘要
现有的denoising算法的有效性通常依赖于准确的预定噪声统计数据或大量配对数据,从而限制了它们的实用性。在这项工作中,我们专注于在不可用的噪声统计数据和配对数据的更常见情况下进行降级。考虑到CNNS需要监督,我们开发了一个新的\ textbf {自适应噪声模仿(adani)}算法,该算法可以从自然嘈杂的图像中综合嘈杂的数据。为了产生逼真的噪音,噪声发生器将未配对的嘈杂/干净的图像作为输入,嘈杂的图像是噪声产生的指南。通过对噪声的类型,级别和梯度施加明确的约束,ADANI的输出噪声将与导向的噪声相似,同时保持图像的原始清洁背景。然后将来自ADANI的嘈杂数据输出与相应的地面真相耦合,然后以完全监督的方式训练Denoising CNN。实验表明,Adani产生的嘈杂数据在视觉上和统计学上与真实数据相似,因此我们方法中的Denoising CNN与接受外部配对数据训练的其他网络具有竞争力。
The effectiveness of existing denoising algorithms typically relies on accurate pre-defined noise statistics or plenty of paired data, which limits their practicality. In this work, we focus on denoising in the more common case where noise statistics and paired data are unavailable. Considering that denoising CNNs require supervision, we develop a new \textbf{adaptive noise imitation (ADANI)} algorithm that can synthesize noisy data from naturally noisy images. To produce realistic noise, a noise generator takes unpaired noisy/clean images as input, where the noisy image is a guide for noise generation. By imposing explicit constraints on the type, level and gradient of noise, the output noise of ADANI will be similar to the guided noise, while keeping the original clean background of the image. Coupling the noisy data output from ADANI with the corresponding ground-truth, a denoising CNN is then trained in a fully-supervised manner. Experiments show that the noisy data produced by ADANI are visually and statistically similar to real ones so that the denoising CNN in our method is competitive to other networks trained with external paired data.