论文标题

培训和推断基于整数的语义细分网络

Training and Inference for Integer-Based Semantic Segmentation Network

论文作者

Yang, Jiayi, Deng, Lei, Yang, Yukuan, Xie, Yuan, Li, Guoqi

论文摘要

近年来,语义细分一直是研究和行业的主要主题。但是,由于按像素的预测和反向传播算法的计算复杂性,语义分割在计算资源中一直要求,从而导致了缓慢的训练和推理速度以及对存储模型的大量存储空间。加快分割网络的速度的现有方案改变了网络结构并具有明显的准确性降解。但是,神经网络量化可用于减少计算负载,同时保持可比的精度和原始网络结构。语义分割网络在许多方面与传统的深卷卷卷神经网络(DCNN)不同,并且在现有作品中尚未彻底探讨该主题。在本文中,我们提出了一个新的量化框架,用于培训和推断分割网络,其中首次将参数和操作限制为基于8位整数的值。对数据流的全面量化以及在批处理中的正方形和根操作的去除,使我们的框架能够对固定点设备执行推断。我们提出的框架在主流语义分割网络(如FCN-VGG16和DeepLabv3-Resnet50)上进行了评估,可在ADE20K数据集和Pascal VOC 2012数据集中实现可比的准确性。

Semantic segmentation has been a major topic in research and industry in recent years. However, due to the computation complexity of pixel-wise prediction and backpropagation algorithm, semantic segmentation has been demanding in computation resources, resulting in slow training and inference speed and large storage space to store models. Existing schemes that speed up segmentation network change the network structure and come with noticeable accuracy degradation. However, neural network quantization can be used to reduce computation load while maintaining comparable accuracy and original network structure. Semantic segmentation networks are different from traditional deep convolutional neural networks (DCNNs) in many ways, and this topic has not been thoroughly explored in existing works. In this paper, we propose a new quantization framework for training and inference of segmentation networks, where parameters and operations are constrained to 8-bit integer-based values for the first time. Full quantization of the data flow and the removal of square and root operations in batch normalization give our framework the ability to perform inference on fixed-point devices. Our proposed framework is evaluated on mainstream semantic segmentation networks like FCN-VGG16 and DeepLabv3-ResNet50, achieving comparable accuracy against floating-point framework on ADE20K dataset and PASCAL VOC 2012 dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源