论文标题
卡西米尔盒子里的重力
Gravitons in a Casimir box
论文作者
论文摘要
弄清楚具有Casimir型边界条件的重力的分区函数。最简单的盒子允许一个实现完整的分析控制的最简单盒子由一个平板几何形状组成,其两个无限平行的平面由距离d分开。在这种情况下,线性重力(如电磁作用)等于两个游离的无质量标量场,一个带有dirichlet,一个具有Neumann边界条件,进而将其合并为单个无质量标量,并在长度为2d的间隔下具有周期性的边界条件。当打开适当适当的自旋角动量的化学潜力时,分区函数是模块化的协变量,并用Eisenstein系列表示。它与光子相吻合。在高温下,结果为标准(重力)黑体结果提供了封闭形式的所有有限大小的校正。更有趣的是低温/较小的距离膨胀,其中对分区函数的主要贡献是在逆温度下是线性的,并且以系统的Casimir能量为单位,而对熵的主要贡献与该区域成正比,并且起源于与板平行的Gravitons。
The partition function of gravitons with Casimir-type boundary conditions is worked out. The simplest box that allows one to achieve full analytical control consists of a slab geometry with two infinite parallel planes separated by a distance d. In this setting, linearized gravity, like electromagnetism, is equivalent to two free massless scalar fields, one with Dirichlet and one with Neumann boundary conditions, which in turn may be combined into a single massless scalar with periodic boundary conditions on an interval of length 2d. When turning on a chemical potential for suitably adapted spin angular momentum, the partition function is modular covariant and expressed in terms of an Eisenstein series. It coincides with that for photons. At high temperature, the result provides in closed form all subleading finite-size corrections to the standard (gravitational) black body result. More interesting is the low-temperature/small distance expansion where the leading contribution to the partition function is linear in inverse temperature and given in terms of the Casimir energy of the system, whereas the leading contribution to the entropy is proportional to the area and originates from gravitons propagating parallel to the plates.