论文标题

通过三点相关功能和机器学习技术分析电离时代

Analysing the Epoch of Reionization with three-point correlation functions and machine learning techniques

论文作者

Jennings, W. D., Watkinson, C. A., Abdalla, F. B.

论文摘要

高红移21cm信号的三点和高阶聚类统计包含有关电离时代的有价值信息。我们提出了3PCF-FAST,这是一种优化的代码,用于估计3D像素化数据的三点相关函数,例如数值和半数字模拟的输出。在对具有已知分析三分相关函数的数据测试3PCF-FAST之后,我们使用机器学习技术从公开可用的21cmfast代码的输出中的相关性中恢复平均气泡大小和全局电离分数。我们假设前景已被完美地删除和可忽略的仪器噪声。使用电离分数数据,我们的最佳MLP模型以中位预测误差约为10%,或者从21cm差异亮度温度中恢复平均气泡大小,中位预测误差约为14%。另外两个MLP模型恢复了全局电离分数,中位预测误差约为4%(使用电离分数数据)或约16%(使用亮度温度)。我们的结果表明,在电离分数场和亮度温度场中的聚类编码有关电离时代进步的有用信息,以互补的方式与其他摘要统计数据进行了补充。在高信噪比阻止气泡尺寸统计的直接测量的情况下,使用聚类将特别有用。我们使用功率谱比较MLP模型的质量,并发现使用三点相关函数优于预测全局电离分数和平均气泡大小的功率谱。

Three-point and high-order clustering statistics of the high-redshift 21cm signal contain valuable information about the Epoch of Reionization. We present 3PCF-Fast, an optimised code for estimating the three-point correlation function of 3D pixelised data such as the outputs from numerical and semi-numerical simulations. After testing 3PCF-Fast on data with known analytic three-point correlation function, we use machine learning techniques to recover the mean bubble size and global ionisation fraction from correlations in the outputs of the publicly available 21cmFAST code. We assume that foregrounds have been perfectly removed and negligible instrumental noise. Using ionisation fraction data, our best MLP model recovers the mean bubble size with a median prediction error of around 10%, or from the 21cm differential brightness temperature with median prediction error of around 14%. A further two MLP models recover the global ionisation fraction with median prediction errors of around 4% (using ionisation fraction data) or around 16% (using brightness temperature). Our results indicate that clustering in both the ionisation fraction field and the brightness temperature field encode useful information about the progress of the Epoch of Reionization in a complementary way to other summary statistics. Using clustering would be particularly useful in regimes where high signal-to-noise ratio prevents direct measurement of bubble size statistics. We compare the quality of MLP models using the power spectrum, and find that using the three-point correlation function outperforms the power spectrum at predicting both global ionisation fraction and mean bubble size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源