论文标题

使用机器学习的系外行星检测

Exoplanet Detection using Machine Learning

论文作者

Malik, Abhishek, Moster, Benjamin P., Obermeier, Christian

论文摘要

我们介绍了一种基于机器学习的新技术,可以使用过境方法检测系外行星。事实证明,机器学习和深度学习技术广泛适用于各个科学研究领域。我们旨在利用其中一些方法来改善当前在天体物理学中用于检测外部行星的常规基于算法的方法。使用时间序分析库tsfresh来分析光曲线,我们从每个曲线中提取了789个特征,从而捕获了有关光曲线特征的信息。然后,我们使用这些功能使用机器学习工具LightGBM训练梯度提升分类器。在模拟数据上测试了这种方法,这表明该方法比常规盒最小二乘拟合(BLS)方法更有效。我们进一步发现,我们的方法与现有的最新深度学习模型产生了可比的结果,同时在计算上更有效,而无需光曲线的折叠和次要视图。对于开普勒数据,该方法能够预测AUC为0.948的行星,因此94.8%的真实行星信号的排名高于非行星信号。结果召回为0.96,因此将96%的真实行星归类为行星。对于过渡系外行星调查卫星(TESS)数据,我们发现我们的方法可以以0.98的精度对光曲线进行分类,并且能够以0.63的精度识别以0.82召回的行星。

We introduce a new machine learning based technique to detect exoplanets using the transit method. Machine learning and deep learning techniques have proven to be broadly applicable in various scientific research areas. We aim to exploit some of these methods to improve the conventional algorithm based approaches presently used in astrophysics to detect exoplanets. Using the time-series analysis library TSFresh to analyse light curves, we extracted 789 features from each curve, which capture the information about the characteristics of a light curve. We then used these features to train a gradient boosting classifier using the machine learning tool lightgbm. This approach was tested on simulated data, which showed that is more effective than the conventional box least squares fitting (BLS) method. We further found that our method produced comparable results to existing state-of-the-art deep learning models, while being much more computationally efficient and without needing folded and secondary views of the light curves. For Kepler data, the method is able to predict a planet with an AUC of 0.948, so that 94.8 per cent of the true planet signals are ranked higher than non-planet signals. The resulting recall is 0.96, so that 96 per cent of real planets are classified as planets. For the Transiting Exoplanet Survey Satellite (TESS) data, we found our method can classify light curves with an accuracy of 0.98, and is able to identify planets with a recall of 0.82 at a precision of 0.63.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源