论文标题

传感器网络上的分布式变分贝叶斯算法

Distributed Variational Bayesian Algorithms Over Sensor Networks

论文作者

Hua, Junhao, Li, Chunguang

论文摘要

在传感器网络中,贝叶斯框架中的分布式推理/估计由于其广泛的适用性,最近受到了广泛关注。变分贝叶斯(VB)算法是一种用于近似贝叶斯推断中引起的棘手积分的技术。在本文中,我们提出了两种新型的分布式VB算法,用于一般的贝叶斯推理问题,可以应用于非常通用的共轭指数模型。在第一种方法中,使用使用随机天然梯度优化每个节点的全局自然参数,该梯度利用了近似空间的riemannian几何形状,然后是与邻居合作的信息扩散步骤。在第二种方法中,在自然参数空间中建立了针对分布式估计的约束优化公式,并通过交替的乘数方法(ADMM)求解。然后介绍了贝叶斯高斯混合模型的分布推理/估计的应用,以评估所提出算法的有效性。对合成数据集和真实数据集的仿真表明,所提出的算法具有出色的性能,几乎与相应的集中式VB算法一样好,这些VB算法依赖于融合中心中可用的所有数据。

Distributed inference/estimation in Bayesian framework in the context of sensor networks has recently received much attention due to its broad applicability. The variational Bayesian (VB) algorithm is a technique for approximating intractable integrals arising in Bayesian inference. In this paper, we propose two novel distributed VB algorithms for general Bayesian inference problem, which can be applied to a very general class of conjugate-exponential models. In the first approach, the global natural parameters at each node are optimized using a stochastic natural gradient that utilizes the Riemannian geometry of the approximation space, followed by an information diffusion step for cooperation with the neighbors. In the second method, a constrained optimization formulation for distributed estimation is established in natural parameter space and solved by alternating direction method of multipliers (ADMM). An application of the distributed inference/estimation of a Bayesian Gaussian mixture model is then presented, to evaluate the effectiveness of the proposed algorithms. Simulations on both synthetic and real datasets demonstrate that the proposed algorithms have excellent performance, which are almost as good as the corresponding centralized VB algorithm relying on all data available in a fusion center.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源