论文标题
使用机器学习对伽马射线爆发的模型独立校准
Model independent calibrations of gamma ray bursts using machine learning
论文作者
论文摘要
我们通过基于Bézier多项式的新技术来缓解循环问题,从而使伽马射线爆发不是完美的距离指标。为此,我们使用井合并\ textit {amati}和\ textit {combo}相关性。我们考虑改进了来自差异哈勃速率点的模拟数据的校准目录。为了获取模拟数据,我们使用那些很好地适应伽马射线爆发的机器学习方案,详细讨论了我们如何从机器学习技术中处理少量数据。特别是,我们仅探索三种机器学习处理,即\ emph {线性回归},\ emph {神经网络}和\ emph {Random Forest},强调了这些选择背后的定量统计动机。我们的校准策略包括获取哈勃数据的数据,使用机器学习创建模拟汇编,并首先使用标准的卡方分析,然后通过层次结构的贝叶斯回归程序来通过Bézier多项式进行校准上述相关性。由两个相关性构建的相应目录已用于限制黑暗能源方案。因此,我们基于最新的万神殿超新星数据,重型声音振荡和我们的伽玛射线爆发数据,使用马尔可夫链蒙特卡洛数值分析。我们测试了标准的$λ$ CDM型号和Chevallier-Polarski-Linder参数化。鉴于我们的结果,我们讨论了最近的$ H_0 $张力。此外,我们突出了超过$ω_m$的进一步严重的张力,我们得出结论,可能会出现略微不断发展的暗能量模型。
We alleviate the circularity problem, whereby gamma-ray bursts are not perfect distance indicators, by means of a new model-independent technique based on Bézier polynomials. To do so, we use the well consolidate \textit{Amati} and \textit{Combo} correlations. We consider improved calibrated catalogs of mock data from differential Hubble rate points. To get our mock data, we use those machine learning scenarios that well adapt to gamma ray bursts, discussing in detail how we handle small amounts of data from our machine learning techniques. In particular, we explore only three machine learning treatments, i.e. \emph{linear regression}, \emph{neural network} and \emph{random forest}, emphasizing quantitative statistical motivations behind these choices. Our calibration strategy consists in taking Hubble's data, creating the mock compilation using machine learning and calibrating the aforementioned correlations through Bézier polynomials with a standard chi-square analysis first and then by means of a hierarchical Bayesian regression procedure. The corresponding catalogs, built up from the two correlations, have been used to constrain dark energy scenarios. We thus employ Markov Chain Monte Carlo numerical analyses based on the most recent Pantheon supernova data, baryonic acoustic oscillations and our gamma ray burst data. We test the standard $Λ$CDM model and the Chevallier-Polarski-Linder parametrization. We discuss the recent $H_0$ tension in view of our results. Moreover, we highlight a further severe tension over $Ω_m$ and we conclude that a slight evolving dark energy model is possible.