论文标题
通过Kähler-Einstein Metric存在一个完整的全态矢量场
Existence of a complete holomorphic vector field via the Kähler-Einstein metric
论文作者
论文摘要
在本文中,我们研究了在强烈的伪有源复合歧管上存在完整的全态载体场的存在,该复合物承认呈负弯曲的完整的Kähler-Einstein度量和离散的自动形态序列。使用潜在缩放的方法,我们将证明Kähler-Einstein度量的潜在功能,其差异具有恒定的长度。然后,我们将从电位函数的梯度矢量场构建一个完整的全态矢量场。
In this paper, we study the existence of a complete holomorphic vector fields on a strongly pseudoconvex complex manifold admitting a negatively curved complete Kähler-Einstein metric and a discrete sequence of automorphisms. Using the method of potential scaling, we will show that there is a potential function of the Kähler-Einstein metric whose differential has a constant length. Then we will construct a complete holomorphic vector field from the gradient vector field of the potential function.