论文标题
MAGPI调查 - 科学目标,设计,观察策略,早期结果和理论框架
The MAGPI Survey -- science goals, design, observing strategy, early results and theoretical framework
论文作者
论文摘要
我们介绍了中世纪带有整体场光谱(MAGPI)调查的中世纪特性的概述,这是一个大型ESO/VLT的大型程序。 MAGPI旨在研究3-4 GYR的回顾期星系转化的物理驱动因素,在此期间,星系的动力学,形态和化学性质预计将显着发展。该调查使用了从GAMA调查中选择的领域的新型中深度自适应光学辅助缪斯观察,提供了大量公开可用的辅助多波长数据。使用这些数据,MAGPI将在0.25 <z <z <0.35的环境范围内(分离的,组和群集)中的60个大型(> 7 x 10^10 m_sun)中央星系的样品绘制恒星和电离气体的化学性质。 Muse通过基础层自适应光学元件(Glao,0.6-0.8 ArcSec FWHM)提供的空间分辨率将有助于与附近宇宙的整体田间光谱调查直接进行比较,例如Sami和Manga,例如使用自适应光学器件,例如。罪。除了主要(中央)星系样品外,Magpi还将以0.25 <z <0.35的多达150个卫星星系提供分辨和未解决的光谱,以及Z <6的数百个发射线来源。本文概述了Magpi的科学目标,调查设计和观察Magpi的策略。我们还首次介绍了Magpi数据,并使用当前一代的宇宙学水动力学模拟(包括Eagle,Magneticum,Horizon-Agn和Illustris-TNG)比较Magpi数据的理论框架。我们的结果表明,宇宙学流体动力学模拟使星系的空间解析特性在z〜0.3处的空间解析性质进行了差异。 MAGPI观察将放置新的约束,并允许在星系形成理论中进行切实的改进。
We present an overview of the Middle Ages Galaxy Properties with Integral Field Spectroscopy (MAGPI) survey, a Large Program on ESO/VLT. MAGPI is designed to study the physical drivers of galaxy transformation at a lookback time of 3-4 Gyr, during which the dynamical, morphological, and chemical properties of galaxies are predicted to evolve significantly. The survey uses new medium-deep adaptive optics aided MUSE observations of fields selected from the GAMA survey, providing a wealth of publicly available ancillary multi-wavelength data. With these data, MAGPI will map the kinematic and chemical properties of stars and ionised gas for a sample of 60 massive (> 7 x 10^10 M_Sun) central galaxies at 0.25 < z <0.35 in a representative range of environments (isolated, groups and clusters). The spatial resolution delivered by MUSE with Ground Layer Adaptive Optics (GLAO, 0.6-0.8 arcsec FWHM) will facilitate a direct comparison with Integral Field Spectroscopy surveys of the nearby Universe, such as SAMI and MaNGA, and at higher redshifts using adaptive optics, e.g. SINS. In addition to the primary (central) galaxy sample, MAGPI will deliver resolved and unresolved spectra for as many as 150 satellite galaxies at 0.25 < z <0.35, as well as hundreds of emission-line sources at z < 6. This paper outlines the science goals, survey design, and observing strategy of MAGPI. We also present a first look at the MAGPI data, and the theoretical framework to which MAGPI data will be compared using the current generation of cosmological hydrodynamical simulations including EAGLE, Magneticum, HORIZON-AGN, and Illustris-TNG. Our results show that cosmological hydrodynamical simulations make discrepant predictions in the spatially resolved properties of galaxies at z ~ 0.3. MAGPI observations will place new constraints and allow for tangible improvements in galaxy formation theory.