论文标题
通过学习和进化的物理信息神经状态空间模型
Physics-Informed Neural State Space Models via Learning and Evolution
论文作者
论文摘要
最近探索在动态系统建模中的深度学习应用的工作表明,将物理先验嵌入神经网络中可以产生更有效,身体上的现实和数据效率高效的模型。但是,如果没有完全对动态系统的物理特征的完整知识,则很难确定这些模型的最佳结构和优化策略。在这项工作中,我们探讨了发现用于系统识别的神经状态空间动力学模型的方法。从具有强大的物理先验的结构化线性图的设计空间开始,我们将这些组件与网络结构,惩罚约束和优化超参数一起将这些组件编码为模型基因组。在展示了设计空间的整体效用中,我们采用了一种异步遗传搜索算法,该算法在模型选择和优化之间交替,并获得了三个物理系统的准确物理一致模型:空气动力器主体,连续的搅拌坦克反应器和两个储罐相互作用。
Recent works exploring deep learning application to dynamical systems modeling have demonstrated that embedding physical priors into neural networks can yield more effective, physically-realistic, and data-efficient models. However, in the absence of complete prior knowledge of a dynamical system's physical characteristics, determining the optimal structure and optimization strategy for these models can be difficult. In this work, we explore methods for discovering neural state space dynamics models for system identification. Starting with a design space of block-oriented state space models and structured linear maps with strong physical priors, we encode these components into a model genome alongside network structure, penalty constraints, and optimization hyperparameters. Demonstrating the overall utility of the design space, we employ an asynchronous genetic search algorithm that alternates between model selection and optimization and obtains accurate physically consistent models of three physical systems: an aerodynamics body, a continuous stirred tank reactor, and a two tank interacting system.