论文标题

零背景极限上的配体呼吸器作为两索顿退化解决方案:一项实验研究

The Peregrine breather on the zero-background limit as the two-soliton degenerate solution: An experimental study

论文作者

Chabchoub, Amin, Slunyaev, Alexey, Hoffmann, Norbert, Dias, Frederic, Kibler, Bertrand, Genty, Goery, Dudley, John M., Akhmediev, Nail

论文摘要

孤子是描述流体动力学,光学,等离子体和Bose-Einstein冷凝物中波局部的非线性演化的连贯结构。虽然已知展览呼吸器可以扩大有限幅度的载波波的单个局部扰动,但在零背景上有一个称为退化的两丝龙的较高背景的溶液,这也导致了高幅度最大值。在这项研究中,我们报告了对水波水槽中具有双重定位峰的多索子的几种观察结果。本实验中收集的数据证实了与非线性schrödinger方程溶液的动力学相吻合的两个因子,确认了波浪扩增的独特实现。高级数值模拟解决了理想流体的非线性游离水表面边界条件的问题,可以量化流体动力学中退化的两氧化物的物理局限性。

Solitons are coherent structures that describe the nonlinear evolution of wave localizations in hydrodynamics, optics, plasma and Bose-Einstein condensates. While the Peregrine breather is known to amplify a single localized perturbation of a carrier wave of finite amplitude by a factor of three, there is a counterpart solution on zero background known as the degenerate two-soliton which also leads to high amplitude maxima. In this study, we report several observations of such multi-soliton with doubly-localized peaks in a water wave flume. The data collected in this experiment confirm the distinctive attainment of wave amplification by a factor of two in good agreement with the dynamics of the nonlinear Schrödinger equation solution. Advanced numerical simulations solving the problem of nonlinear free water surface boundary conditions of an ideal fluid quantify the physical limitations of the degenerate two-soliton in hydrodynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源