论文标题
功能时间序列预测:功能奇异频谱分析方法
Functional Time Series Forecasting: Functional Singular Spectrum Analysis Approaches
论文作者
论文摘要
在本文中,我们提出了两种用于对功能时间依赖性数据预测的非参数方法,即功能性奇异频谱分析复发预测和向量预测。两种算法都利用功能性奇异频谱分析的结果和过去的观察结果,以预测未来的数据点,在这些数据点中,复发预测一次可以预测一个函数,并且矢量预测可以使用功能向量进行预测。我们将我们的预测方法与通过仿真和真实数据进行功能,时间依赖性数据预测的黄金标准算法进行比较,我们发现我们的技术对周期性随机过程更有效。
In this paper, we propose two nonparametric methods used in the forecasting of functional time-dependent data, namely functional singular spectrum analysis recurrent forecasting and vector forecasting. Both algorithms utilize the results of functional singular spectrum analysis and past observations in order to predict future data points where recurrent forecasting predicts one function at a time and the vector forecasting makes predictions using functional vectors. We compare our forecasting methods to a gold standard algorithm used in the prediction of functional, time-dependent data by way of simulation and real data and we find our techniques do better for periodic stochastic processes.