论文标题
使用可逆的凝聚元素捕获的粘性滑移现象和Schallamach波
Stick-slip phenomena and Schallamach waves captured using reversible cohesive elements
论文作者
论文摘要
在各种物理设置中表面剥离的正确表示,从自然界的运动,到机器人应用中的抓地力,甚至是构造板的滑动,都至关重要。在连续框架中对分离式旋转序列进行建模(称为粘滑)。在这里,我们在混合有限元模型中利用定制的可逆凝聚元素,该模型可以处理快速插入不稳定性的发生。模拟捕获了在实验观测中出现的各种剥离现象,其中将层从平行的方向平行于表面的方向上拉出。对于长层,重新介绍的周期性被证明会发展起来,并与Schallamach波的概念相关。此外,研究了表面特性与棒状滑移行为之间的连接:我们发现棒状滑移与界面倾向链接到局部变形和损坏。除了阐明各种剥离行为和脱离模式外,此处开发的计算框架提供了一种直接研究复杂分层过程的方法,可以指导在不同尺度和各种环境中指导未来应用的开发。
Reversibility is of paramount importance in the correct representation of surface peeling in various physical settings, ranging from motility in nature, to gripping devices in robotic applications, and even to sliding of tectonic plates. Modeling the detachment-reattachment sequence, known as stick-slip, imposes several challenges in a continuum framework. Here we exploit customized reversible cohesive elements in a hybrid finite element model that can handle occurrence of snap-through instabilities. The simulations capture various peeling phenomena that emerge in experimental observations, where layers are pulled from a flat, rigid substrate in the direction parallel to the surface. For long layers, periodicity in reattachment is shown to develop and is linked to the concept of Schallamach waves. Further, the connection between surface properties and stick-slip behavior is investigated: we find that stick-slip is linked to the propensity of the interface to localize deformation and damage. Beyond elucidating the various peeling behaviors and the detachment modes, the computational framework developed here provides a straightforward approach for investigation of complex delamination processes, which can guide development of future applications across different scales and in various settings.