论文标题
降低相位稳定性和更快的形成/解离动力学的分子起源
Molecular origin of the reduced phase stability and faster formation/dissociation kinetics in confined methane hydrate
论文作者
论文摘要
使用高级分子建模技术与中尺度的热力学方法结合使用,揭示了限制在纳米尺度的甲烷水合物形成/解离的微观机制。通过原子规模的模拟,探测对限制和自由能计算的共存,被证明限制的甲烷水合物的相位稳定性仅限于较窄的温度和压力结构域,而不是其大量域。给定压力下的熔点抑郁症与可用的实验数据一致,被证明是使用吉布斯(Gibbs)进行定量描述的 - 如果与孔/液体和孔/水合表面紧张的准确估计一起使用。水合形成和解离时的亚稳定性障碍在限制后会减少,因此为在受限气体水合物的实验中观察到的更快的动力学提供了分子尺度的图像。通过考虑不同的形成机制 - 大量均质成核,外表面成核和孔隙率中的封闭成核 - 我们在成核过程中确定了交叉;孔中形成的临界核根据温度,接触角和孔径对应于半球形帽或桥核。使用经典的成核理论,对于这两种机制,典型的诱导时间均显示出随孔表面与体积比的比例,从而缩放了相互的孔径。这些与此类复杂跃迁相关的关键核和成核速率的发现提供了一种平均值,可以通过简单的热力学数据中任何多孔培养基中合理化和预测甲烷水合物形成。
The microscopic mechanisms involved in the formation/dissociation of methane hydrate confined at the nanometer scale are unraveled using advanced molecular modeling techniques combined with a mesoscale thermodynamic approach. By means of atom-scale simulations probing coexistence upon confinement and free energy calculations, phase stability of confined methane hydrate is shown to be restricted to a narrower temperature and pressure domain than its bulk counterpart. The melting point depression at a given pressure, which is consistent with available experimental data, is shown to be quantitatively described using the Gibbs--Thomson formalism if used with accurate estimates for the pore/liquid and pore/hydrate surface tensions. The metastability barrier upon hydrate formation and dissociation is found to decrease upon confinement, therefore providing a molecular scale picture for the faster kinetics observed in experiments on confined gas hydrates. By considering different formation mechanisms -- bulk homogeneous nucleation, external surface nucleation, and confined nucleation within the porosity -- we identify a crossover in the nucleation process; the critical nucleus formed in the pore corresponds either to a hemispherical cap or a bridge nucleus depending on temperature, contact angle, and pore size. Using the classical nucleation theory, for both mechanisms, the typical induction time is shown to scale with the pore surface to volume ratio and, hence, the reciprocal pore size. These findings for the critical nucleus and nucleation rate associated to such complex transitions provide a mean to rationalize and predict methane hydrate formation in any porous media from simple thermodynamic data.