论文标题
有限$ 2 $ - 群体,恰好有三个自动形态轨道
Finite $2$-groups with exactly three automorphism orbits
论文作者
论文摘要
我们对有限的$ 2 $ -Groups $ G $进行完整分类,为此,自然而然地在$ g $上自然作用的自动形态组$ \ operatatorName {aut}(g)$具有三个轨道。有两个无限家庭和另外一组,订单$ 2^9 $。所有这些都是铃木$ 2 $ - 组,它们出现在Dornhoff的早期分类中。
We give a complete classification of the finite $2$-groups $G$ for which the automorphism group $\operatorname{Aut}(G)$ acting naturally on $G$ has three orbits. There are two infinite families and one additional group, of order $2^9$. All of them are Suzuki $2$-groups, and they appear in an earlier classification of Dornhoff.