论文标题
P组和不变问题的多项式环
p-Groups and the Polynomial Ring of Invariants Question
论文作者
论文摘要
令G为GL(V)的有限P-组,其中P = CHAR(F),V在场上是有限的。 令s(v)为v,s(v)^g的对称代数,g- c-invariants和v* v* v* f二维空间。 以下提出了我们对上述问题的解决方案。 定理A.假设dim(v)= 3。然后,当且仅当g是通过转向产生的时,s(v)^g是一个多项式环。 定理B.假设DIM(V)> 3。然后S(V)^G是一个多项式环,并且仅在: (1)s(v)^{g_u}是v*的每个子空间u的多项式环,with dim(u)= 2,其中g_u = {g in g | in g(u)= u,对于u}中的所有u, (2)s(v)^g是Cohen-Macaulay。 或者,(1)可以用等效条件代替: (3)昏暗的(s(v)^g)<2的非平滑基因座。
Let G be a finite p-subgroup of GL(V), where p = char(F), and V is finite-dimensional over the field F. Let S(V) be the symmetric algebra of V, S(V)^G the subring of G-invariants, and V* the F-dual space of V. The following presents our solution to the above question. Theorem A. Suppose dim(V)=3. Then S(V)^G is a polynomial ring if and only if G is generated by transvections. Theorem B. Suppose dim(V) > 3. Then S(V)^G is a polynomial ring if and only if: (1) S(V)^{G_U} is a polynomial ring for each subspace U of V* with dim(U)=2, where G_U = {g in G | g(u) = u, for all u in U}, and (2) S(V)^G is Cohen-Macaulay. Alternatively, (1) can be replaced by the equivalent condition: (3) dim (non-smooth locus of S(V)^G) < 2.