论文标题

机器人中“主动自我”的感觉运动表示学习:模型调查

Sensorimotor representation learning for an "active self" in robots: A model survey

论文作者

Nguyen, Phuong D. H., Georgie, Yasmin Kim, Kayhan, Ezgi, Eppe, Manfred, Hafner, Verena Vanessa, Wermter, Stefan

论文摘要

安全的人类机器人互动要求机器人能够学习如何在\ sout {人类的世界} \ rev {spaces}中适当地表现,从而应对我们的动态和非结构化环境所带来的挑战,而不是为操作提供一套刚性的规则。在人类中,这些功能被认为与我们在太空中感知身体,在运动过程中感知四肢的位置,意识到其他物体和代理以及控制我们的身体部位以与它们相互作用的能力有关。在本文中,我们首先回顾了这些能力的潜在机制的发展过程:身体模式,人体周围空间和人类活跃的自我的感官表示。其次,我们提供了这些感觉表示和自我机器人技术模型的机器人技术模型的调查。我们将这些模型与人类的模型进行了比较。最后,我们分析了这些机器人技术模型中缺少的内容,并提出了一个理论计算框架,该框架旨在通过通过自我探索来开发感觉表征来允许人工代理中自我意识的出现。

Safe human-robot interactions require robots to be able to learn how to behave appropriately in \sout{humans' world} \rev{spaces populated by people} and thus to cope with the challenges posed by our dynamic and unstructured environment, rather than being provided a rigid set of rules for operations. In humans, these capabilities are thought to be related to our ability to perceive our body in space, sensing the location of our limbs during movement, being aware of other objects and agents, and controlling our body parts to interact with them intentionally. Toward the next generation of robots with bio-inspired capacities, in this paper, we first review the developmental processes of underlying mechanisms of these abilities: The sensory representations of body schema, peripersonal space, and the active self in humans. Second, we provide a survey of robotics models of these sensory representations and robotics models of the self; and we compare these models with the human counterparts. Finally, we analyse what is missing from these robotics models and propose a theoretical computational framework, which aims to allow the emergence of the sense of self in artificial agents by developing sensory representations through self-exploration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源