论文标题

由于二价金属的阳离子而引起的芳族肽的超强顺磁性

Unexpectedly super strong paramagnetism of aromatic peptides due to cations of divalent metals

论文作者

Yang, Haijun, Mu, Liuhua, Zhang, Lei, Wang, Zixin, Sheng, Shiqi, Song, Yongshun, Xiu, Peng, Wang, Jihong, Shi, Guosheng, Hu, Jun, Zhang, Xin, Zhang, Feng, Fang, Haiping

论文摘要

大多数生物系统的磁性尚未被表征,这直接阻碍了我们对许多磁场相关现象的理解,包括磁受伤和磁性生物效应。在这里,我们测量了在室温下液相在存在或不存在二价金属阳离子的情况下,芳香肽AYFFF自组件的磁化率。出乎意料的是,AYFFF自组件在各种二价阳离子(MG2+,Zn2+和Cu2+)中的磁敏感性显示出超强的promagnetism。我们将超强的顺磁性归因于在Ayfff组装中吸附在Ayfff组装中的阳离子上的磁矩的存在,通过水合阳离子-π相互作用,吸附的阳离子在其中表现出无属电子旋转的非数量行为。我们的结果表明,当有足够的二价金属阳离子吸附时,芳香环增强的生物分子中的超强参数磁性或潜在的铁磁磁性。这些发现不仅提供了理解生物系统磁性的基本信息,还引起了研究磁场的磁体受体和生物效应的起源,而且还有助于开发未来的磁对照技术,以对芳族环元素富集的生物元素和生物产物的生物元素以及生物产物制造和生物产物制造和曼尼普化。

The magnetism of most biological systems has not been characterized, which directly impedes our understanding of many magnetic field-related phenomena, including magnetoreception and magnetic bio-effects. Here we measured the magnetic susceptibility of aromatic peptide AYFFF self-assemblies in the presence or absence of divalent metal cations in liquid phase at room temperature. Unexpectedly, the magnetic susceptibilities of AYFFF self-assemblies in the chloride solution of various divalent cations (Mg2+, Zn2+, and Cu2+) show super strong paramagnetism. We attribute the super strong paramagnetism to existence of the magnetic moments on the cations adsorbed on aromatic rings in the AYFFF assemblies through hydrated cation-π interactions, where the adsorbed cations display non-divalent behavior with unpaired electron spins. Our results indicate the super strong paramagnetism or potential ferromagnetism in the aromatic ring-enriched biomolecules when there are enough cations of divalent metals adsorbed. The findings not only provide fundamental information for understanding the magnetism of biological systems, provoke insights for investigating the origin of magnetoreception and bio-effects of magnetic fields, but also help developing future magnetic-control techniques on aromatic ring-enriched biomolecules and drugs in living organisms, as well as biomaterial fabrication and manipulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源