论文标题
基于深度学习的资源分配用于设备到设备通信
Deep Learning-based Resource Allocation For Device-to-Device Communication
论文作者
论文摘要
在本文中,提出了一个深入学习(DL)框架,以优化具有设备对设备(D2D)通信的多通道蜂窝系统中的资源分配。因此,对两个整数变量的D2D用户的频道分配和离散传输功率水平进行了优化,以最大化整体频谱效率,同时维护蜂窝用户的服务质量(QoS)。根据通道状态信息的可用性(CSI)的可用性,考虑了两种不同的配置,即1)具有完整CSI的集中操作和2)分布式CSI的分布式操作,在后一种情况下,CSI是根据反馈通道的能力编码的。提出了一个DL框架,而不是解决每个通道实现的最终资源分配问题,其中,深层神经网络(DNN)模型近似于任意通道条件的最佳资源分配策略。此外,我们提出了一种新的培训策略,该策略结合了受监督和无监督的学习方法和本地CSI共享策略,以实现近乎最佳的性能,同时强制执行基于几个基于几个基础Truth Labels的整数优化变量的QoS约束并有效地处理整数优化变量。我们的仿真结果证实,在计算时间较低的情况下,可以实现近乎最佳的性能,这强调了拟议方案的实时能力。此外,我们的结果表明,不仅可以使用DNN有效地确定资源分配策略,还可以有效地确定CSI编码策略。此外,我们表明所提出的DL框架可以很容易地扩展到具有不同设计目标的通信系统。
In this paper, a deep learning (DL) framework for the optimization of the resource allocation in multi-channel cellular systems with device-to-device (D2D) communication is proposed. Thereby, the channel assignment and discrete transmit power levels of the D2D users, which are both integer variables, are optimized to maximize the overall spectral efficiency whilst maintaining the quality-of-service (QoS) of the cellular users. Depending on the availability of channel state information (CSI), two different configurations are considered, namely 1) centralized operation with full CSI and 2) distributed operation with partial CSI, where in the latter case, the CSI is encoded according to the capacity of the feedback channel. Instead of solving the resulting resource allocation problem for each channel realization, a DL framework is proposed, where the optimal resource allocation strategy for arbitrary channel conditions is approximated by deep neural network (DNN) models. Furthermore, we propose a new training strategy that combines supervised and unsupervised learning methods and a local CSI sharing strategy to achieve near-optimal performance while enforcing the QoS constraints of the cellular users and efficiently handling the integer optimization variables based on a few ground-truth labels. Our simulation results confirm that near-optimal performance can be attained with low computation time, which underlines the real-time capability of the proposed scheme. Moreover, our results show that not only the resource allocation strategy but also the CSI encoding strategy can be efficiently determined using a DNN. Furthermore, we show that the proposed DL framework can be easily extended to communications systems with different design objectives.