论文标题
3D分子设计的对称性感知的演员批评
Symmetry-Aware Actor-Critic for 3D Molecular Design
论文作者
论文摘要
使用深钢筋学习(RL)自动化分子设计有可能大大加速寻找新型材料的方法。尽管在利用图表到设计分子方面取得了最新进展,但这种方法在根本上受到缺乏三维(3D)信息的限制。鉴于此,我们提出了一种用于3D分子设计的新型参与者批评结构,该结构可以通过以前的方法产生无法实现的分子结构。这是通过基于球形谐波系列扩展的旋转协变状态表达来利用设计过程的对称性来实现的。我们证明了方法在几个3D分子设计任务上的好处,在其中我们发现在这种对称性中的建立显着提高了概括和产生的分子的质量。
Automating molecular design using deep reinforcement learning (RL) has the potential to greatly accelerate the search for novel materials. Despite recent progress on leveraging graph representations to design molecules, such methods are fundamentally limited by the lack of three-dimensional (3D) information. In light of this, we propose a novel actor-critic architecture for 3D molecular design that can generate molecular structures unattainable with previous approaches. This is achieved by exploiting the symmetries of the design process through a rotationally covariant state-action representation based on a spherical harmonics series expansion. We demonstrate the benefits of our approach on several 3D molecular design tasks, where we find that building in such symmetries significantly improves generalization and the quality of generated molecules.