论文标题
压力诱导的TIS3纳米管中压力诱导的相变的拉曼指纹:在极端压力条件下的热测量的影响
Raman Fingerprint of Pressure-Induced Phase Transitions in TiS3 Nanoribbons: Implications for Thermal Measurements under Extreme Stress Conditions
论文作者
论文摘要
二维分层的trichalcogenide材料最近引起了科学界的关注,因为它具有强大的机械,热性能以及在光和纳米电子设备中的应用。我们报告了使用直接固体气体反应方法生长的高质量少量三层三硫化钛(TIS3)纳米骨的压力依赖性,并推断出其跨平面热膨胀系数。tis3 nanoribbons的机械稳定性和热能性能是使用Phonon-spectermed phone spectermed pectermepspect的。使用钻石砧细胞在高压(最高34 GPA)的拉曼光谱研究中,鉴定了四个突出的Ag拉曼带。 557 cm-1处的条带在压缩下会柔软,而在175、300和370 cm-1处的频带显示正常的硬化。声子模式频率中的异常和软声子的线路宽度大约13 gpa的过度拓宽归因于可逆的结构过渡的可能发作。从Ag软模式频率(557 cm-1)与压力外推曲线相对于最近报道的理论预测一致,从Ag软模式频率(557 cm-1)推断出43 GPA的完整结构相变。使用拉曼模式的实验模式Grüneisen参数i,估计在环境相处的Tis3纳米管的跨平面热膨胀系数CV估计为1.32110-6K-1。预计观察到的结果将在极端应力条件下的下一代纳米电子和光学设备的校准和性能中有用。
Two-dimensional layered trichalcogenide materials have recently attracted the attention of the scientific community because of its robust mechanical, thermal properties and applications in opto and nanoelectronics devices. We report the pressure dependence of out-of plane Ag Raman modes in high quality few-layers titanium trisulfide (TiS3) nanoribbons grown using a direct solid-gas reaction method and infer their cross-plane thermal expansion coefficient.Both mechanical stability and thermal properties of the TiS3 nanoribbons are elucidated using phonon-spectrum analyses. Raman spectroscopic studies at high pressure (up to 34 GPa) using a diamond anvil cell identify four prominent Ag Raman bands; a band at 557 cm-1 softens under compression, and others at 175, 300, and 370 cm-1 show normal hardening. Anomalies in phonon mode frequencies and excessive broadening in line-width of the soft phonon about ~ 13 GPa are attributed to the possible onset of a reversible structural transition. A complete structural phase transition at 43 GPa is inferred from Ag soft mode frequency (557 cm-1) versus pressure extrapolation curve, consistent with recent reported theoretical predictions. Using the experimental mode Grüneisen parameters i of Raman modes, the cross-plane thermal expansion coefficient Cv of the TiS3 nanoribbons at ambient phase is estimated to be1.32110-6K-1. The observed results are expected to be useful in calibration and performance of next generation nano-electronics and optical devices under extreme stress conditions.