论文标题
绳子网中的韦格纳 - 威尔逊循环
Wegner-Wilson loops in string nets
论文作者
论文摘要
我们在存在弦张力的情况下研究了Levin和Wen的弦网模型中的Wegner-Wilson循环。后者负责从拓扑解剖相(弱张力)到微不足道的狭窄相(强张力)的相变。我们在两个限制案例中分析了所有韦格纳 - 威尔逊循环的行为,以针对字符串 - 网络模型的任意输入理论。使用Fluxon图片,我们在拓扑阶段对外围定律的第一贡献作为量子尺寸的函数。在微不足道的阶段,我们发现Wegner-Wilson循环遵守修改的区域法,同意最近的平均场方法。
We study the Wegner-Wilson loops in the string-net model of Levin and Wen in the presence of a string tension. The latter is responsible for a phase transition from a topological deconfined phase (weak tension) to a trivial confined phase (strong tension). We analyze the behavior of all Wegner-Wilson loops in both limiting cases for an arbitrary input theory of the string-net model. Using a fluxon picture, we compute perturbatively the first contributions to a perimeter law in the topological phase as a function of the quantum dimensions. In the trivial phase, we find that Wegner-Wilson loops obey a modified area law, in agreement with a recent mean-field approach.