论文标题

元感应:智能跨表面辅助RF 3D传感通过深度加固学习

MetaSensing: Intelligent Metasurface Assisted RF 3D Sensing by Deep Reinforcement Learning

论文作者

Hu, Jingzhi, Zhang, Hongliang, Bian, Kaigui, Di Renzo, Marco, Han, Zhu, Song, Lingyang

论文摘要

使用RF信号进行无线传感,人们的注意力越来越多。但是,由于在不可控制的无线电环境中不必要的多路褪色,RF传感的准确性是有限的。在本文中,我们考虑了以下情况下部署智能跨表面来感知3D对象的存在和位置的情况,而是考虑了以下情况。通过对其光束形式的模式进行编程,元图可以提供理想的传播属性。但是,达到高感应精度是具有挑战性的,因为它需要对波束形式的联合优化,并将接收的信号映射到感知的结果中。为了应对这一挑战,我们制定了一个优化问题,以最大程度地减少感应结果的跨透明拷贝丢失,并提出深入的增强学习算法,以共同计算最佳光束形式图案和接收信号的映射。仿真结果验证了所提出的算法的有效性,并显示了元图和目标空间的大小如何影响感应精度。

Using RF signals for wireless sensing has gained increasing attention. However, due to the unwanted multi-path fading in uncontrollable radio environments, the accuracy of RF sensing is limited. Instead of passively adapting to the environment, in this paper, we consider the scenario where an intelligent metasurface is deployed for sensing the existence and locations of 3D objects. By programming its beamformer patterns, the metasurface can provide desirable propagation properties. However, achieving a high sensing accuracy is challenging, since it requires the joint optimization of the beamformer patterns and mapping of the received signals to the sensed outcome. To tackle this challenge, we formulate an optimization problem for minimizing the cross-entropy loss of the sensing outcome, and propose a deep reinforcement learning algorithm to jointly compute the optimal beamformer patterns and the mapping of the received signals. Simulation results verify the effectiveness of the proposed algorithm and show how the sizes of the metasurface and the target space influence the sensing accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源