论文标题

配对的立方图的支配数

The Paired Domination Number of Cubic Graphs

论文作者

Sheng, Bin, Lu, Changhong

论文摘要

令G为没有孤立顶点的简单无向图。配对的统治集G是一个主导集,该集合可引起具有完美匹配的子图。由γpr(g)表示的G的配对支配数是其最小的配对主导集的大小。 Goddard和Henning猜想除Petersen图外,每个图(g){g){g){g){\ geq} 3的γpr(g){\ leq} 4N/7都保持。在本文中,我们证明了用于立方图的猜想。

Let G be a simple undirected graph with no isolated vertex. A paired dominating set of G is a dominating set which induces a subgraph that has a perfect matching. The paired domination number of G, denoted by γpr(G), is the size of its smallest paired dominating set. Goddard and Henning conjectured that γpr(G) {\leq} 4n/7 holds for every graph G with δ(G) {\geq} 3, except the Petersen Graph. In this paper, we prove this conjecture for cubic graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源