论文标题

具有周期性$ n $ step驱动场的两级系统:确切的动态和量子状态操作

Two-level systems with periodic $N$-step driving fields: Exact dynamics and quantum state manipulations

论文作者

Shi, Zhi-Cheng, Chen, Ye-Hong, Qin, Wei, Xia, Yan, Yi, X. X., Zheng, Shi-Biao, Nori, Franco

论文摘要

在这项工作中,我们得出了动态方程式的精确解决方案,该方程可以代表由周期性$ n $步骤驾驶场驱动的所有两级Hermitian系统。对于不同的物理参数,此动态方程式显示了定期$ n $ step驱动系统的各种现象。时间依赖性的过渡概率可以通过一个通用公式表示,该公式由具有离散频率的余弦函数组成,并且显着,该公式适合于任意参数制度。此外,只有少数余弦函数(即一个到三个主要频率)足以描述定期$ n $ step驱动系统的实际动力学。 {此外,我们发现当两个(或三个)主要频率相似时,出现了过渡概率的击败。通过定期$ n $步骤驾驶场中的量子状态操作中也证明了一些应用程序。

In this work, we derive exact solutions of a dynamical equation, which can represent all two-level Hermitian systems driven by periodic $N$-step driving fields. For different physical parameters, this dynamical equation displays various phenomena for periodic $N$-step driven systems. The time-dependent transition probability can be expressed by a general formula that consists of cosine functions with discrete frequencies, and, remarkably, this formula is suitable for arbitrary parameter regimes. Moreover, only a few cosine functions (i.e., one to three main frequencies) are sufficient to describe the actual dynamics of the periodic $N$-step driven system. {Furthermore}, we find that a beating in the transition probability emerges when two (or three) main frequencies are similar. Some applications are also demonstrated in quantum state manipulations by periodic $N$-step driving fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源