论文标题

牛顿后极限中的最小指数度量模型

Minimal exponential measure model in the post-Newtonian limit

论文作者

Feng, Justin C., Mukohyama, Shinji, Carloni, Sante

论文摘要

我们研究了[J. C. Feng,S。Carloni,物理。 Rev. D 101,064002(2020)]使用参数化后纽顿(PPN)形式主义的扩展,该形式也适用于其他类型I类型的重力理论。然后,新的PPN扩展用于计算牛顿后重力潜力的单极项,并对球形对称物质分布中的圆轨道进行分析。后者表明,对于模因模型参数$ q $的现实值,该行为与一般相对性没有显着差异。相反,前者表明,可以使用牛顿常数$ g $的精确度量来提高$ Q $的约束,最高$ 10 $。

We examine the post-Newtonian limit of the minimal exponential measure (MEMe) model presented in [J. C. Feng, S. Carloni, Phys. Rev. D 101, 064002 (2020)] using an extension of the parameterized post-Newtonian (PPN) formalism which is also suitable for other type-I minimally modified Gravity theories. The new PPN expansion is then used to calculate the monopole term of the post-Newtonian gravitational potential and to perform an analysis of circular orbits within spherically symmetric matter distributions. The latter shows that the behavior does not differ significantly from that of general relativity for realistic values of the MEMe model parameter $q$. Instead the former shows that one can use precision measurements of Newton's constant $G$ to improve the constraint on $q$ by up to $10$ orders of magnitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源