论文标题
组成夸克模型中的奇怪的隐藏链tetraquarks
Strange hidden-charm tetraquarks in constituent quark models
论文作者
论文摘要
受BESIII协作的新报告的$ z_ {cs}(cs}(3985)^{ - } $的启发,我们系统地研究了带有两个结构的奇怪的隐藏式Tetraquark Systems $ cs \ bar {c} \ bar {c} \ bar {u} $,带有两个结构:Meson-Meson-Meson和Diquark-diquark-andiquark。两个夸克模型:此处使用手性夸克模型(CHQM)和夸克)彩色筛选模型(QDCSM)。在两个夸克模型中都获得了相似的结果。 CHQM或QDCSM中都没有任何界限,它不包括分子状态解释($ d_ {s} d^{*}/d_ {s}^{*}^{*} d/d_ {s}^{s}^{**} d^} d^{*} $) However, the effective potentials for the diquark-antidiquark $cs\bar{c}\bar{u}$ systems shows the possibility of some resonance states with mass range of $3916.5\sim 3964.6$ MeV for $IJ^{P}=\frac{1}{2} 0^{+}$, $4008.8\sim 4091.2$ mev for $ ij^{p} = \ frac {1} {2} {2} 1^{+} $,$ 4246.8 \ sim 4418.1 $ mev for $ ij^{p} = \ frac {1} {1} {2} {2} {2} {2} {2} 2^{+} $。 So the observed $Z_{cs}(3985)^{-}$ state is possible to be explained as a compact resonance state composed of $cs\bar{c}\bar{u}$ with $IJ^{P}=\frac{1}{2} 0^{+}$ or $ ij^{p} = \ frac {1} {2} 1^{+} $。对相应开放通道的散射过程进行的研究正在进行中,以检查该结论。
Inspired by the newly reported $Z_{cs}(3985)^{-}$ by the BESIII Collaboration, we systematically investigate the strange hidden-charm tetraquark systems $cs\bar{c}\bar{u}$ with two structures: meson-meson and diquark-antidiquark. Two quark models: the chiral quark model (ChQM) and the quark delocalization color screening model (QDCSM) are used here. Similar results are obtained in both two quark models. There is no any bound state in either ChQM or QDCSM, which excludes the molecular state explanation ($D_{s}D^{*}/D_{s}^{*}D/D_{s}^{*}D^{*}$) of the reported $Z_{cs}(3985)^{-}$. However, the effective potentials for the diquark-antidiquark $cs\bar{c}\bar{u}$ systems shows the possibility of some resonance states with mass range of $3916.5\sim 3964.6$ MeV for $IJ^{P}=\frac{1}{2} 0^{+}$, $4008.8\sim 4091.2$ MeV for $IJ^{P}=\frac{1}{2} 1^{+}$, $4246.8\sim 4418.1$ MeV for $IJ^{P}=\frac{1}{2} 2^{+}$. So the observed $Z_{cs}(3985)^{-}$ state is possible to be explained as a compact resonance state composed of $cs\bar{c}\bar{u}$ with $IJ^{P}=\frac{1}{2} 0^{+}$ or $IJ^{P}=\frac{1}{2} 1^{+}$. The study of the scattering process of corresponding open channels is under way to check this conclusion.