论文标题
通货膨胀后,俄克利形成的重力波光谱
Gravitational wave spectra from oscillon formation after inflation
论文作者
论文摘要
我们系统地研究了单场通货膨胀的预热行为,具有支撑力的潜力。我们计算发射的重力波(GWS)的性质以及产生的oscillons的数量密度和特征。通过对各种潜在类型进行数值模拟,我们将两个家族的分析电势划分,每个家族都包含具有不同大型或小场依赖性的电势。我们发现,发射的GW光谱的形状和振幅具有通用特征,在Efflaton振荡期间,物理波数$ k/a \ sim m $周围的峰值,与确切的潜在形状无关。这可以用作一种吸烟枪,以推断出猛烈的预热阶段的存在和通货膨胀后可能形成的俄克斯杆菌形成。尽管存在这种明显的普遍性,但我们发现两个潜在家族之间发出的GW光谱的形状差异,从而导致它们之间的歧视特征。特别是,所有电位都显示出在Oscillon组成时出现的GW光谱中两峰结构的出现。然而,表现出有效参数共振的电势倾向于弄脏该结构,到模拟结束时,GW频谱表现出一个宽峰。我们进一步计算了每个电势生产的旋转芯的性质,发现稳定旋转杆的数量密度和尺寸分布的差异和瞬态过度。我们执行线性波动分析,并使用Floquet图表将模拟的结果与参数共振的结构联系起来。我们发现,标量扰动的生长速率和相关的oscillon形成时间对小场的电势形状敏感,而oscillons的宏观物理特性(例如总数)取决于大型场电位形状。
We systematically investigate the preheating behavior of single field inflation with an oscillon-supporting potential. We compute the properties of the emitted gravitational waves (GWs) and the number density and characteristics of the produced oscillons. By performing numerical simulations for a variety of potential types, we divide the analyzed potentials in two families, each of them containing potentials with varying large- or small-field dependence. We find that the shape and amplitude of the emitted GW spectrum have a universal feature, with the peak around the physical wavenumber $k/a \sim m$ at the inflaton oscillation period, irrespective of the exact potential shape. This can be used as a smoking-gun for deducing the existence of a violent preheating phase and possible oscillon formation after inflation. Despite this apparent universality, we find differences in the shape of the emitted GW spectra between the two potential families, leading to discriminating features between them. In particular, all potentials show the emergence of a two-peak structure in the GW spectrum, arising at the time of oscillon formation. However, potentials exhibiting efficient parametric resonance tend to smear out this structure and by the end of the simulation the GW spectrum exhibits a single broad peak. We further compute the properties of the produced oscillons for each potential, finding differences in the number density and size distribution of stable oscillons and transient overdensities. We perform a linear fluctuation analysis and use Floquet charts to relate the results of our simulations to the structure of parametric resonance. We find that the growth rate of scalar perturbations and the associated oscillon formation time are sensitive to the small-field potential shape while the macroscopic physical properties of oscillons (e.g. total number) depend on the large-field potential shape.